
A Novel Approximation to Dynamic Time Warping allows
Anytime Clustering of Massive Time Series Datasets
Qiang Zhu Gustavo Batista Thanawin Rakthanmanon Eamonn Keogh

University of California, Riverside
{qzhu, gbatista, rakthant, eamonn}@cs.ucr.edu

ABSTRACT
Given the ubiquity of time series data, the data mining
community has spent significant time investigating the
best time series similarity measure to use for various
tasks and domains. After more than a decade of
extensive efforts, there is increasing evidence that
Dynamic Time Warping (DTW) is very difficult to
beat. Given that, recent efforts have focused on making
the intrinsically slow DTW algorithm faster. For the
similarity-search task, an important subroutine in many
data mining algorithms, significant progress has been
made by replacing the vast majority of expensive DTW
calculations with cheap-to-compute lower bound
calculations. However, these lower bound based
optimizations do not directly apply to clustering, and
thus for some realistic problems, clustering with DTW
can take days or weeks.
In this work, we show that we can mitigate this
untenable lethargy by casting DTW clustering as an
anytime algorithm. At the heart of our algorithm is a
novel data-adaptive approximation to DTW which can
be quickly computed, and which produces
approximations to DTW that are much better than the
best currently known linear-time approximations. We
demonstrate our ideas on real world problems showing
that we can get virtually all the accuracy of a batch
DTW clustering algorithm in a fraction of the time.

Keywords
DTW, Clustering, Anytime Algorithm

1 INTRODUCTION
The extraordinary ubiquity of time series data has

resulted in the data mining community spending
significant resources in investigating algorithms to mine
time series archives. Much of this effort has focused on
finding the best distance measure to use for the given
domain. After more than a decade of extensive research,
there is increasing evidence that Dynamic Time
Warping (DTW), which includes Euclidean Distance
(ED) as a special case, is very difficult to beat [5][41].
Given this, significant attention has focused on making
the intrinsically quadratic-time DTW algorithm faster
[5][16][17][43]. For the problem of query-by-content,
significant progress has been made by replacing the vast
majority of expensive DTW calculations with cheap-to-

compute lower bound calculations. However, these
lower bound based optimizations do not directly apply
to clustering, and thus for some realistic problems,
clustering with DTW can take days or weeks. As a
concrete example, consider the two following real world
problems:
� A star light curve is the measurement of the

brightness of a celestial object as a function of time
[13]. The study of light curves in astronomy has led
to the discoveries of pulsars, extra solar planets,
supernovae, the rate of expansion of the universe,
etc. In addition to automatically recorded digital star
light curves, there are over 100 million analogue
observations from archives dating back 130 years
[37]. One stage of the digitization process involves
clustering the data to look for outliers [13], and
recent work has forcefully shown that DTW is much
better than ED for this task [28]. However, as we
shall show below, clustering a mere 9,236 curves
under DTW takes about 127 days using a batch
algorithm, a severe bottleneck in digitization efforts.

� A fundamental idea in autonomous robotics is that
the robot should learn to adapt to its environment by
clustering its experiences and using those clusters as
the basis of classification and/or outlier detection
algorithms [8][10][25][44]. For at least a decade,
DTW has been the distance measure of choice in this
domain [8][25]. However, in general we cannot
anticipate how long the robot will have to do
clustering before external events force it to invoke a
classification decision, thus an anytime framework is
ideal in this context.
In this work, we show that we can mitigate the

untenable lethargy of DTW clustering by casting it as
an anytime algorithm [7][45]. Anytime algorithms are
algorithms that trade execution time for quality of
results. In particular, an anytime algorithm always has a
best-so-far answer available, and the quality of the
answer improves with execution time. The user may
interact with the clustering, examining an answer at any
time and choose to terminate, temporarily suspend, or
continue the algorithm’s execution until completion
[33]. For example, in the star light curve scenario above,
rather than waiting 127 days for the batch algorithm to
finish, the user may temporarily suspend the algorithm
after a few hours, glance at the approximate solution and

if she sees obvious outliers, she can then examine these
outliers offline while the resumed algorithm runs in the
background.

The idea of interactively exploring clustering results
has been shown to be useful for at least a decade [31],
but thus far has been limited to Euclidean distance or
other inexpensive distance measures.

At the heart of our technique for porting DTW
clustering to an anytime framework is a novel data-
adaptive approximation to DTW which can be quickly
computed, but produces approximations to DTW which
are much closer than any of the known linear-time
approximations [29]. Our ideas are general enough to be
used for hierarchical, partitional or spectral clustering;
and the overhead (the extra time over the batch
algorithm that our anytime algorithms take if allowed to
run to completion) is inconsequential. The fundamental
contributions of our work are:
� A novel approximation to Dynamic Time Warping,

which is both fast to compute and accurate, by
exploiting the domain dependent relationship
between DTW and its upper and lower bounds.

� A heuristic ordering function that tells the anytime
algorithm the best order in which calculate the exact
DTW distances. In essence, this ordering function
predicts which of the currently approximated
distances are most likely to benefit from being
replaced by exact DTW calculations.

The rest of the paper is organized as follows. In
Section 2 we review related work and give three
assumptions that inform our ideas. In Section 3 we
introduce the framework of our anytime clustering
algorithm, expanding the discussion of the two main
subroutines in Section 4 and Section 5. We perform an
extensive empirical evaluation on real datasets in
Section 6, and offer conclusions in Section 7.

2 ASSUMPTIONS AND RELATED WORK
We begin with a statement of the assumptions that

inform our work. We denote the number of time series
to cluster as M and their length as N1.
2.1 Assumptions

Assumption 1: The time taken to cluster the data is
negligible compared to the time to calculate all
required DTW distances.

As a concrete example, once we are given a full
distance matrix for the “start light curves” dataset with
M = 9,236 and N = 1,024, hierarchical clustering with
average linkage only takes 4 seconds, whereas it takes
127 days to actually fill the matrix with DTW distances.

1 For datasets with different length of time series, we can normalize
them to the same length with little or no impact on accuracy [26].

This assumption not only motivates our work (if
DTW could be quickly computed, the batch algorithm
would suffice), but allows the desirable interruptibility
property of anytime algorithms (cf. Section 2.2).

Note that this assumption includes the implicit
assumption that the problems we are interested in are
CPU constrained, not I/O constrained. There is
significant research on clustering with (relatively)
inexpensive distance measures on datasets that are too
large to fit into main memory [3]. In contrast, our
distance measure (DTW) is so expensive that even when
the amount of data we have is trivially retained in main
memory, the time needed to cluster may be on the order
of weeks.

Assumption 2: Both a lower bound and upper bound
to the true DTW distance can be calculated in a time
that is negligible compared to the time taken to
calculate DTW.

This assumption is not difficult to satisfy: while the
time complexity for DTW is O(N2), several lower
bounds (LB_Keogh [16], LB_Kim [17], LB_Yi [43],
etc.) are available which can be calculated in just O(N).
Moreover, the Euclidean distance is an upper bound to
the DTW, and it can also be calculated in O(N). As we
will show in Section 4, a very accurate approximation to
DTW can be obtained based on combining lower and
upper bounds.

Assumption 3: DTW can produce superior clustering
results for time series than the Euclidean distance.

Clearly if this assumption is not true, then we are
wasting our time trying to cast DTW clustering into an
anytime framework, since we should just do efficient
clustering with the Euclidean distance. It has been
shown recently that for one-nearest neighbor
classification, on 38 diverse datasets, that DTW
significantly outperforms Euclidean distance on a
majority of datasets [5]. DTW achieves its robustness by
allowing non-linear alignments between two time series,
as shown in Figure 1.left.

Cp

EB1

EB2

DTW

EB2

EB1
Figure 1: left) The DTW alignment between two Eclipsing
Binary (EB) star light curves shows an intuitive peak-to-
peak matching. right) Three star light curves clustered
under the DTW distance with complete linkage. The two
eclipsing binaries are correctly linked together, in
contrast to Euclidean clustering (cf. Figure 2)

For such similar but locally out of phase time series,
however, the Euclidean distance would report an
unexpectedly large distance. We illustrate this in Figure
2.left for star light curves also shown in Figure 1.left. If
we contrast the clusterings obtained in these two figures,

we can gain some intuition as to the utility of DTW for
clustering.

EB1

Cp

EB2

EDEB2
EB1

Figure 2: left) Time series are aligned one-to-one by
the Euclidean distance, the distance reported is
proportional to the length of the gray hatch lines.
right) Three star light curves clustered under the
Euclidean distance with complete linkage are
subjectively and objectively incorrect. We would have
expected that the two Eclipsing Binaries (EB) would
link before either linked with the Cepheid (Cp).

However, it has also recently been shown that as
datasets get larger, the difference in performance
between DTW and Euclidean distance converges for
one-nearest neighbor classification [32]. Presumably
this is because an item to be classified is more likely to
find a close match without the need for excessive
warping as the dataset gets larger. Thus, while we can
show that Euclidean distance can produce poor
clustering results for small datasets, as in Figure 2.right,
we must be careful assuming this can happen for larger
datasets. This assumption is the only one not directly
answered by the current literature. Therefore, we tested
all datasets containing at least 2,000 time series from the
UCR repository [38], which contains the majority of all
publicly available, labeled time series datasets in the
world. We applied three clustering algorithms to eleven
large datasets under Euclidean and DTW distance
respectively, and compared the results against the
ground truth by Adjusted Rand Index [12]. The results
are visually summarized in Figure 3.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
ARI by Euclidean distance

AR
I b

y
DT

W

In this area,
Euclidean distance is
better

In this area,
DTW is better

Figure 3: DTW vs. Euclidean distance tested using
three types of clustering algorithms. The clustering
results are measured by Adjusted Rand Index (ARI).
Each point corresponds to one dataset with one
clustering algorithm.

As we can see, DTW won the majority of times, and
had a very close score even when it lost (cf. [36] for all
raw numbers). Nevertheless, note that our assumption
only postulates DTW’s superiority for clustering of

some real dataset(s); it is not necessary that DTW
always outperforms Euclidean distance.

It is worth noting that once the above assumptions
are satisfied, our anytime algorithm framework does not
make any additional assumptions about the concrete
clustering algorithms or objective functions that need to
be optimized, and is thus very generally applicable.

2.2 Related Work
2.2.1 DTW Approximation

The time taken to compute the best alignment of two
time series as shown in Figure 1.left, and thus the DTW
distance, is O(N2), we refer the reader to [16] and the
references therein for more details on the DTW.

Because of the long known utility of DTW, and the
fact that exact algorithm is intrinsically slow, there has
been at least two decades of effort to improve its
performance by approximation [4][29]. Note that these
efforts are orthogonal to the efforts to create tight lower
bounds of DTW [5]. While lower bounds can be seen as
special cases of approximation, they are designed for a
single purpose, allowing lower-bound based indexing
[5][16][17][43]. These lower bound functions return a
“distance” of zero for most sequences that are somewhat
similar. This is not a problem within the context of a
lower-bound based nearest neighbor search, but clearly
lacks fine discrimination power for clustering.

Most of the work on approximating DTW for direct
use in data mining algorithms leverages of the idea of
doing DTW on a reduced dimensionality approximation
[29], possibly at multiple levels of reduced
dimensionality, using the results at a coarse level of
approximation to seed the search at the next level [4].
This idea is attractive because if we down sample the
data by a factor of C, the speedup obtained is
approximately C2.

However, all such methods are either still O(N 2) but
with a lower constant factor, or O(N) but with such high
constant factors that they may be slower than fast O(N 2)
methods. In either case, none of methods we are aware
of produce a good approximation to the true DTW in
anything close to less than one-tenth of the time for full
DTW algorithm. As we shall see in Section 4.1, our
method can produce very accurate approximations to the
true DTW for diverse datasets in a tiny fraction of the
time needed for the full DTW algorithm.
2.2.2 Anytime Algorithms

As illustrated in Figure 4.left, anytime algorithms are
algorithms that trade execution time for quality of
results [45]. In particular, after some small amount of
setup-time an anytime algorithm always has a best-so-
far answer available, and the (expected) quality of the
answer improves with execution time, until the anytime
algorithm eventually terminates with the same answer
that the batch algorithm would have achieved. Because
data miners are interested in increasingly large datasets

and, at least in some cases, increasingly complex
analysis of these datasets, there has been a recent
explosion of interest in using anytime (and anyspace
[44]) algorithms for data mining [19][30][33][39][42].

Time

Best Algorithm

Time

Q
ua

lit
y

of

So
lu

tio
n

Setup Time

Current Solution

Interruption
Time

If interrupted here,
result is the same
as the batch
algorithm

S
Figure 4: left) An abstract illustration of an anytime
algorithm. Note that the quality of the solution keeps
improving up to time S, when the algorithm is interrupted
by the user. right) A comparison of possible performances
of anytime algorithms. Here the top line shows an
algorithm that dominates the other two at all times.

The most desirable properties of anytime algorithms
have been outlined by Zilberstein and Russell [45]:
� Interruptibility: After some small amount of setup

time, the algorithm can be stopped at any time and
provide a tentative or partial answer.

� Monotonicity: The quality of the result is a non-
decreasing function of computation time. Note that
we desire this to be true on average; however, it is
not necessary that on any particular run the quality
must be strictly monotonic.

� Measurable quality: The quality of an approximate
result can be determined. Note that it is only
necessary that we can measure the quality in the
same sense as we could measure the quality of the
batch algorithm. Fully measuring the
quality/validity of a clustering solution is still an
area of active research [9].

� Diminishing returns: The improvement in solution
quality is largest at the early stages of computation.

� Preemptability: The algorithm can be suspended
and inspected, and then resumed with minimal
overhead.

� Low Overhead: The time taken by the anytime
algorithm to run to completion (assuming it is not
interrupted) must be only slightly longer than the
time taken by the batch algorithm.

Figure 4 illustrates many of these desirable
properties. An obvious question is how can we compare
the performance of several rival candidate anytime
algorithms? In the best case, a single algorithm may
dominate its rivals at every time point, as in Figure
4.right with the bold/red line. However, if we ignore this
line, there are two hypothetical algorithms dominating
each other at different times. In such a case, we would
generally prefer the one which gains the most
improvement at the beginning of the run.
2.2.3 Anytime Clustering

In contrast to anytime classification [19][22][30]
[33][39][42], anytime clustering has gained much less
attention from the data mining community. In [11] the
authors proposed a technique called “active data

clustering”, which actively selects new distances to
calculate, and uses tentative knowledge to estimate the
relevance of missing data. However, they defined their
own objective function and a special clustering method
to minimize it, which limits its application. One of the
most exciting ideas in this area recently appeared in [6],
where the authors considered the problem of how to
reconstruct the hierarchical clustering based on just a
small subset of all pair-wise distances. The authors
formally prove that if the “tight clustering” (TC)
condition (the distance between two items in the same
sub-tree is always smaller than the distance from each of
them to any item out of the sub-tree) holds, the exact
clustering of M items can be determined with 3MlogM
distance calculations. Strictly speaking, their method is
not presented as an anytime algorithm; however, it could
trivially be seen as such, although the 3MlogM
calculations that must be done would result in a long
setup time. Moreover, it is not clear how the technique
will work for non-metric distance functions (such as
DTW), and we desire a more general technique that also
allows partitional or spectral clustering.

Finally there are several research efforts that are
titled anytime clustering, but are perhaps better
understood as incremental clustering, suggesting
techniques to maintain clusters in the face of newly
arriving objects [18].

In summary, we are not aware of any generic
techniques that allow for anytime hierarchical/
partitional/spectral clustering under expensive non-
metric distance measures such as DTW.
2.2.4 Quality Measurement of Clusterings

We need to measure the quality of clustering in two
contexts. First, we simply need to demonstrate the
monotonicity and diminishing returns of our algorithm
by creating plots like Figure 4. Second, to allow
interactive clustering [14][31], it is useful (but not
necessary) to have a quantitative measure of the current
clustering.

The former requirement is easy to deal with. We can
plot the quality of the approximate solutions at every
stage of the anytime algorithm by comparing it to the
final solution based on the exact DTW. After extensive
empirical and theoretical evaluation, the authors of [20]
recommended Adjusted Rand Index (ARI) as the most
robust index to measure the similarity of two
clusterings, and it has become one of the most widely
adopted validation measurements [35]. The expected
value of ARI is zero if the current solution is a random
clustering, and it reaches its maximal value of one when
the current clustering is identical to the final result. We
refer the reader to [12] for more details of ARI.

While we will focus on ARI for the quality
measurement in Section 6, to minimize the danger of
producing optimistic results by using only a single

measure, we also tested several other widely used
measurements, such as the cophenetic correlation
coefficient [34] which measures the linear correlation of
pair-wise distances between two dendrograms,
normalized mutual information [40] which compares
two clusterings from an information theoretical
perspective, etc. We find these measurements are highly
related, and we thus mostly omit redundant plots for
brevity. The interested reader can find all results in our
supporting website [36].

As for the problem of evaluating the quality of
clustering when a user preempts a run of the anytime
algorithm, there are many possibilities available, from
visual inspection (surprisingly scalable up to at least
10,000 objects for hierarchical clustering [31]) to
various statistical tests [9].

3 ANYTIME CLUSTERING FRAMEWORK
The basic outline of our anytime clustering

algorithm is described in Table 1. The first three lines in
Table 1 correspond to the setup stage of the anytime
algorithm (shown as the gray region in Figure 4). The
algorithm can only be interrupted after the completion of
this stage. As the reader may recall from the
interruptability property (cf. Section 2.2), this stage
should only last for a very short period of time. We first
build an approximation of the DTW distance matrix2
(aDTW) in line 1. As DTW is a symmetric measure, the
matrix is saved as an upper triangular matrix in the row-
major order. Once the distance matrix is available,
clustering (either hierarchical, partitional, or spectral) is
performed to obtain the first approximate solution we
can report to the user (line 2).

Table 1. Basic framework for anytime clustering
Algorithm [Clusters] = AnytimeClustering(Dataset)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

aDTW = BuildApproDistMatrix(Dataset);
Clusters = Clustering(aDTW,Dataset);
Disp(‘Setup is done, interruption is possible’);

O = OrderToUpdateDTW(Dataset);
for i = 1:Length(O)

aDTW(O(i)) = DTW(Dataset,O(i));
if UserInterruptIsTrue()

 Clusters = Clustering(aDTW,Dataset);
 if UserTerminateIsTrue(Clusters)
 return;
 endif

endif
endfor
Clusters = Clustering(aDTW);

Lines 6 to 14 calculate the true DTW distances to
incrementally replace the values in aDTW, in the order
specified in O obtained in line 5. During this stage,
clustering is performed (line 9) only if the user requests
an answer (line 8). If the user interrupts the algorithm in

2 Note that although we approximate the full distance matrix, our
algorithm can also be applied to those clustering methods not requiring all
pair-wise distances (once Assumption 1 holds), where the algorithm can be
terminated if every queried distance from aDTW is the exact distance.

this manner, she has a choice to terminate the algorithm
after checking the current clustering result (line 10).
This may happen because the approximate solution
already satisfies the user’s evaluation criteria; or in
contrast, the user might believe that there is no hope to
obtain a meaningful clustering even if the full DTW
matrix had been calculated. For example, she sees a very
poor clustering, and realizes that she forgot to normalize
the data, or that the time series smoothing parameter she
used was too aggressive, etc.

When all (M×(M-1))/2 distances have been updated,
the aDTW matrix becomes the true DTW matrix
(tDTW), and we have the same answer (line 15) as the
batch algorithm.

Given this framework, there are just two things we
must define: how do we create the approximate DTW
matrix aDTW required in line 1, and how we define the
update ordering list O in line 5? Note that both these
decisions are independent of the choice of which
clustering algorithm the user will use (lines 2 and 9).

Before giving our solutions to these two sub-
problems in the next two sections, we would like to
emphasize that the proposed framework in Table 1 is
generic enough to support virtually all distance-based
clustering algorithms with little or no modifications.

4 APPROXIMATION OF THE DTW
DISTANCE MATRIX

In order to build an approximation of the DTW
distance matrix (aDTW) as required in line 1 of Table 1,
we have many potential choices. We could initialize
aDTW with the Euclidean distance, or with one of the
many lower bounds to DTW proposed in the literature
such as LB_Keogh [16], LB_Kim and LB_Yi [43], or
with the DTW distance calculated on downsampled
versions the time series [29], etc.

The most critical constraint on the plethora of
choices we have is that the time to build aDTW must be
a tiny fraction of the time to calculate all DTW
distances; otherwise, this would impose a long setup
time. Fortunately, as noted in Section 2.1, there are both
lower and upper bounds available to DTW that can be
computed in O(N). Among the lower bounds, LB_Keogh
(denoted as LB for short below) has been shown to be
the tightest lower bound in [5] and elsewhere, and
Euclidean distance (ED) is a tight upper bound to DTW
and can also be computed in O(N).

As illustrated in Figure 5, the DTW distance
between any two sequences can be bound between LB
and ED.

LB(T1,T2)

ED(T1,T2)

DTW(T1,T2)

0

The Euclidean distance is a O(N)
upper bound to the DTW distance

The LB_Keogh is a O(N) lower
bound to the DTW distance

The DTW takes O(N2) to compute

The DTW distance must be
somewhere within this interval

Figure 5: The DTW distance can be bounded by fast-
to-compute upper and lower bounds.

While either bound could be separately used as
approximations to DTW, a fundamental contribution of
this work is to show that we can derive a much more
accurate approximation by using these two bounds
together. We propose to learn the best “mixing weight”
of the upper/lower bounds by sampling a tiny fraction of
the true DTW distances. We begin by defining the
DTW_Ratio for a pair of time series (T1, T2) as:

),(),(
),(),(),(_

2121

2121
21 TTLBTTED

TTLBTTDTWTTRatioDTW
�
�

� (1)3

DTW_Ratio(T1,T2) gives the relative position of
DTW(T1,T2) between its lower and upper bounds. We
can readily notice from (1) that it equals zero when
DTW(T1,T2) = LB(T1,T2); it equals one when
DTW(T1,T2) = ED(T1,T2); and the range of
DTW_Ratio(T1,T2) is constrained to [0,1] (cf. Figure 5).
Assume for the moment that the DTW_Ratio for two
time series is known, and that we have calculated the
corresponding LB and ED, then we can rearrange (1) to
solve for the DTW distance:

)),(),((),(_

),(),(

212121

2121

TTLBTTEDTTRatioDTW
TTLBTTDTW

���
� (2)

Based on this we have transformed the problem of
estimating DTW distance for each pair of time series to
the problem of estimating the appropriate DTW_Ratio.
Let us preview the results in the next section by
considering three possibilities for the DTW_Ratio.
� If it is the case that the DTW_Ratio between any

two pairs of time series is about the same value for
any dataset, then we could find this value once and
have a universal O(N) (since both LB and ED can
be calculated in O(N)) estimator of DTW for any
dataset. Regrettably, as we shall see, this is not true.

� If it is the case that the DTW_Ratio between any
two pairs of time series is about the same value for
a particular dataset, then we could learn that value
for just that particular dataset, and have a domain
specific O(N) estimator of DTW. Unfortunately, as
we shall see, this is only sometimes true.

� If the DTW_Ratio between any two pairs of time
series has some distribution that depends on LB and

3 We define DTW_Ratio(T1,T2) = 0 if ED(T1,T2) - LB(T1,T2) = 0.

ED, and if we can cheaply estimate this distribution,
we have a O(N) estimator of DTW for that domain.

In the following section we flesh out these ideas.

4.1 Observations about the DTW_Ratio
Assume for the moment that we are only allowed to

use a single value, r, to approximate all DTW_Ratios in
a given dataset. We can use the ubiquitous Root Mean
Square Error (RMSE) to measure the quality of the
estimation:

 2

1
)),(_(

2

1 rTTRatioDTW
M

RMSE
Mji

ji �
�
�
	

�
�

�
���

 (3)

RMSE has a unique minimum when setting r to the
mean of all DTW_Ratios (also defined as the standard
deviation of DTW_Ratios); however, how well this one-
size-fits-all mean estimator works (i.e., how small RMSE
is) depends on the distribution of DTW_Ratio values.
The ideal case would be if they were all in a tightly
restricted range, since the mean value would be a good
approximation to all values. However, if the distribution
of the DTW_Ratios is large, then the wide spread of
their values will result in a lack of precision in the
estimation of the DTW values.

To understand these distributions, we examined all
large datasets from the UCR archive [38], plotting the
histograms of all (M×(M-1))/2 DTW_Ratios for two of
them in Figure 6.

0

The Euclidean distance
is a O(N) upper bound
to the DTW distance

The LB_Keogh is a O(N)
lower bound to the DTW
distance

0 0.2 10.4 0.6 0.8

0 0.2 10.4 0.6 0.8
Figure 6: left) Histograms of DTW_Ratios of all pairs of
time series for two large datasets from [38]. left.top)
“Two Patterns” dataset containing 5,000 samples.
left.bottom) “Face(all)” dataset containing 2,250 samples.
right) The histograms can be seen in the context of the
upper and lower bounds, see also Figure 5.

As we can see in Figure 6, in these two cases both
distributions form a unimodal distribution with most of
the values close to the mean (i.e, with low variance). We
find that the RMSE of the one-size-fits-all mean
estimator is 0.11 and 0.10, respectively. This result
suggests that, in spite of its simplicity, a reasonable
approximation technique is simply to use the mean. To
summarize our findings thus far:

Observation 1: The one-size-fits-all mean estimator can
be a good approximation to all DTW_Ratios from a
single dataset.

Do the DTW_Ratio values always have a unimodal
distribution with a small variation for all datasets?

Unfortunately we find this is not the case. We show two
typical counterexamples in Figure 7:

0 0.2 10.4 0.6 0.8 0 0.2 10.4 0.6 0.8
Figure 7: Histograms of DTW_Ratios of all pairs of time
series for two large datasets, which are against
Observation 1. left) “star light curves” dataset [27] (9,236
samples) right) “wafer” dataset [38] (7,174 samples)

As we can see, the histogram in Figure 7.left is
heavily right-skewed and the one in Figure 7.right
clearly forms a bimodal distribution. For such cases, the
above one-size-fits-all mean estimator is much less
accurate: their RMSE are 0.19 and 0.25 respectively.

To obtain some intuition as to how we might
improve the current estimation model, let us consider a
toy example. Suppose we have nine pairs of time series,
whose DTW_Ratios are {0.3, 0.2, 0.4, 0.5, 0.4, 0.2, 0.3,
0.1, 0.3}. Using the one-size-fits-all mean estimator, we
set r to their mean 0.3 and obtain a RMSE of 0.12, as
illustrated in Figure 8.a.

RMSE = 0.12 RMSE = 0.04

RMSE = 0.08

a b

c d

0.1
0.2
0.3
0.4
0.5

0 1 2 3 4 5 6 7 8 9

RMSE = 0.12
0.1
0.2
0.3
0.4
0.5

0 1 2 3 4 5 6 7 8 9

0.1
0.2
0.3
0.4
0.5

0 1 2 3 4 5 6 7 8 9

0.1
0.2
0.3
0.4
0.5

0 1 2 3 4 5 6 7 8 9
Figure 8: Illustration of different mean estimators. a)
one-size-fit-all mean estimator. b), c) and d) are
multiple-for-all (k=3) mean estimators based on
optimal, random and approximate sorting, respectively.

Suppose instead that we are allowed to use multiple,
say k (1 < k ≤ n), values to approximate all
DTW_Ratios? In this case, all pairs of time series are
divided into k equal-size 4 groups and each of the k
groups is assigned its own estimated value r. If k = 3, it
is simple to find the optimal grouping is {{0.1, 0.2, 0.2},
{0.3, 0.3, 0.3}, {0.4, 0.4, 0.5}}, which reduces the
RMSE to 0.04 by setting each r to the mean value of the
corresponding group, as shown in Figure 8.b.

Are we guaranteed to obtain a smaller RMSE if we
use this multiple-for-all mean estimator? The answer is
no. Figure 8.c shows that the grouping {{0.1, 0.3, 0.5},
{0.2, 0.3, 0.4}, {0.2, 0.3, 0.4}} generates the same
RMSE as the one-size-fits-all mean estimator. The reader
may have noticed that the difference between the above
two groupings is that the optimal one (Figure 8.b) is

4 A size-adaptive division is also possible; we use equal-size for
simplicity because it achieves very good approximation (see 6.1) and
tentative tests suggest the room for improvement is marginal.

based on the sorted DTW_Ratios. It is easy to see why
the sorting-based grouping works better, since the
sorting puts closer values into the same group, and thus
reduces their differences to the mean of the group.
However, the actual values of DTW_Ratios are
unknown (recall that our task is to estimate them). It
seems that the sorting heuristic cannot be applied
because of this chicken-and-egg paradox.

Perhaps all is not lost; we can ask: could an
approximate sorting of DTW_Ratios still help? For
clarity, consider an approximate sorting based grouping
for our toy example: {{0.1, 0.2, 0.3}, {0.2, 0.3, 0.4},
{0.3, 0.4, 0.5}}, as shown in Figure 8.d. It is clear that,
although approximate, the sorting still helps to make
values in the same group closer, and therefore the RMSE
is reduced to 0.08.

Fortunately, we can obtain a good approximate
sorting of DTW_Ratios based on only ED and LB. We
first divide the numerator and denominator of the right
part of (1) by LB(T1,T2) to obtain:

1),(/),(

1),(/),(
),(_

2121

2121
21 �

�
�

TTLBTTED
TTLBTTDTWTTRatioDTW (4)

From (4), it is clear that the DTW_Ratio depends on
two distinct quantities: the ratios DTW(T1,T2)/LB(T1,T2)
and ED(T1,T2)/LB(T1,T2). To explore their properties,
we randomly sampled 1,000 pairs from the “star light
curves” dataset and plotted their LB distances in
increasing order together with respective DTW and ED
values in Figure 9.

0
10
20
30
40
50

1 300 500 600 800200 400 1000700 900

ED
DTW
LB

100
Figure 9: ED, DTW and LB of 1,000 randomly
sampled pairs of time series from “star light curves”
dataset, in the increasing order of LB.

We can observe that:
� LB is a tighter bound to DTW than ED, and thus

DTW/LB is usually much smaller than ED/LB.
� The curve of DTW is smoother than the curve of

ED, which demonstrates that the variance of
DTW/LB is lower than ED/LB (both curves are
ordered by LB).

This pattern is observed in almost all large datasets
we have checked (see also Figure 11). Therefore, the
DTW_Ratio in (4) tends to be largely determined by the
denominator term ED(T1,T2)/LB(T1,T2), and we can use
this intuition to approximately sort the DTW_Ratios.

We tested the multiple-for-all mean estimator with
100 groups based on the approximate sorting, and
compared the result to the one-size-fits-all mean
estimator. RMSE is reduced from 0.19 to 0.12 for the
“start light curves” dataset and from 0.25 to 0.13 for the

“wafer” dataset5. Before moving on, we summarize our
new findings about DTW_Ratio as follows:

Observation 2: We can further reduce RMSE by the
multiple-for-all mean estimator based on the
approximate sorting of DTW_Ratios.

4.2 Estimating the DTW_Ratio
For the multiple-for-all mean estimator proposed

above, we had set the number of groups to 100. This is
the only important parameter of our approximation
method. To explore its sensitivity to RMSE, we tested on
all four datasets discussed in Section 4.1 using different
numbers of groups. Figure 10 shows the results:

0.08
0.12
0.16

0.2
0.24

1 2 4 8 16 32 64 128 256 512 1024

wafer
start light curves
Face(all)
Two Patterns

Number of Groups

RM
SE

Figure 10: RMSE vs. Number of Groups. Tested on four
large datasets using different number of groups (one
group corresponds to the one-size-fits-all mean
estimator). RMSE varies little when number of groups is
more than 16 for all datasets. Note log scale in x axis.

The plot clearly suggests that the number of groups
is not critical to the estimation error of our multiple-for-
all mean estimator, once it is larger than, say 16.
Therefore, for the rest of this paper, we have fixed the
number of groups to 20.

There is one more issue to resolve the mean
estimator: how do we obtain the mean of DTW_Ratios
for each group? We achieve this by sampling. Due to the
central limit theorem, the mean of a large collection of
DTW_Ratios is approximately normally distributed,
thus the mean of randomly sampled DTW_Ratios
follows a Student’s t distribution. A t-test can be applied
to tell if the true mean falls in any given confidence
interval. For all the remaining experiments in this paper,
we sample DTW_Ratios incrementally until the true
mean falls in [sample mean-0.01, sample mean+0.01]
with a 90% confidence.

As we shall show in Section 6.1, the number of
sampled DTW_Ratios (i.e., full DTW calculations) is
only a tiny portion for all datasets we tested.
Furthermore, the property of t-test tells us that the
number of sampled DTW_Ratios for a given confidence
interval is only related to the standard deviation of the
sampled DTW_Ratios, not the size of the data set.

5 GENERAL ORDERING HEURISTICS
Having initialized with a good approximation of the

DTW distance matrix, the next step is to update each

5 We did extensive experiments on diverse large datasets, and all of
them gained from the approximate sorting. Due to the limited space,
all results are archived at [36].

value in aDTW, one-by-one, till it becomes tDTW. As
we noted in Section 3, we would like to find a good
updating order O which is general enough to be applied
to any clustering algorithm. Therefore, we will focus on
how to reduce the approximation error of aDTW
quickly. Generally, we expect the approximate
clustering result to be closer to the final clustering result
if aDTW is more similar to tDTW.

We first define the Normalized DTW
Approximation Error (NDAE) for a given pair of time
series (T1, T2) as:

),(
|),('),(|),(

21

2121
21 TTDTW

TTDTWTTDTWTTNDAE �
� (5)

NDAE(T1,T2) equals zero if the approximation
distance DTW’(T1,T2) is identical to the DTW(T1,T2), in
which case we do not need to update the distance for
that pair, while we should give priority to update DTW
for those pairs with a larger NDAE . It is difficult to
order NDAE based on (5), thus we replace DTW in (5)
by (2), and obtain another equivalent expression for
NDAE(T1,T2):

),(_)1),(/),(/(1

|),('_),(_|

212121

2121

TTRatioDTWTTLBTTED
TTRatioDTWTTRatioDTW

��
� (6)

Let us consider the numerator / denominator:
� We cannot compare the numerator for pairs of time

series (since the DTW_Ratio(T1,T2) is unknown);
however, based on tests in Section 4.1, its expected
value is very small.

� We can approximately sort the denominator. Since
ED and LB are known, and as we have previously
shown (in Section 4.1), a pair of time series with a
larger ED/LB is more likely to have a smaller
DTW_Ratio.
Therefore, we can make a similar claim that a pair of

time series with a larger ED/LB is more likely to have a
larger NDAE, and therefore should be given priority to
update its true DTW distance.

We have compared our proposed ordering technique
to a dozen alternatives: random ordering,
smallest/largest value in aDTW first, items from
lowest/highest variance column in aDTW first, etc.
Surprisingly, considering all datasets and clustering
algorithms, random ordering is a very competitive
technique, and thus we use it as our straw man technique
in the next section.

6 EMPIRICAL EVALUATION
To obtain a thorough evaluation of our ideas, we:

� Tested on all eleven datasets containing at least
2,000 time series from the UCR Time Series
repository [38], the world’s largest collection of
time series datasets.

� Evaluated the similarity of 133,601,661 (non-
duplicated) pairs of time series from diverse

domains, such as astronomy, sensor networks,
robotics, etc.

� Applied three different types of clustering
algorithms (hierarchical, partitional and spectral),
and measured their performance by 5 indices.

� Created a website [36] which contains all datasets
and code used in this work, together with
spreadsheets which contain the raw numbers
displayed in all the figures. In addition, the website
contains additional experiments which we could not
fit into this work (including a YouTube video
illustrating the utility of our ideas:
http://youtu.be/43nKmEuum2c).

6.1 DTW Approximation
We begin our experiments with a comparison of the

mean NDAE (the smaller the better, see (5)) of all pair-
wise approximations by three methods: LB, ED and our
proposed DTW_Ratio-based approximation
(DTW_Ratio for short below). Recall that the latter
needs to randomly sample a tiny fraction of true DTW
distances. To be fair to the other methods, we also
updated those sampled DTW for LB and ED. For each
dataset, we calculated mean NDAE of all (M×(M-1))/2
pairs approximations, repeating each test ten times, and
reported the mean in Figure 11:

0

0.4

0.8

1.2

1.6

1 2 3 4 5 6 7 8 9 10 11
DTW_Ratio

LB
ED

Figure 11: Mean of NDAE of all pair-wise
approximations by three DTW approximation methods,
tested on eleven large datasets. Smaller values are
better. The first four datasets are discussed in Section 4
and [36] contains a description/key for all datasets.

The dominance of DTW_Ratio is quite obvious in
the above figure. Notably, the mean NDAE (averaged on
all datasets) by DTW_Ratio is just 0.1, which means the
expected error of our approximation is only one-tenth of
the true DTW. The results bode well for our proposed
anytime algorithm that exploits this approximation.

Having shown that we can estimate the initial aDTW
very accurately, we are ready to evaluate two desirable
properties (cf. Section 2.2) of the anytime algorithm.

The first one is the interruptibility, here in terms of
how long it takes to obtain the first aDTW. While LB
and ED can be calculated quickly for all pairs, the
number of sampled DTW distances must be a small
number. For the above tests, the sampling rate for each
dataset varies from 0.02% to 0.25%, with an average of
just 0.1%. Furthermore, as analyzed in Section 4.2, the
number of DTW calculations required by sampling will

not increase as the dataset gets larger. In fact, the largest
sampling rate above comes from the smallest dataset we
tested. To give the reader a concrete sense of how much
speed up we can gain from the approximation, we
consider the “star light curve” as an example. The time
to calculate the full distance matrix of ED and LB is 23
minutes and 116 minutes, respectively. Just 7,760
(averaged over 10 runs) DTW distances are sampled
from all 42,647,230 possible pairs by our initial
approximation, which takes about 33 minutes. So, the
overall time the user has to wait for aDTW to be built is
less than 3 hours, in contrast to the 127 days for the
batch algorithm. We archived full experimental results
on all eleven datasets at [36], showing a speed-up from
113 times to more than 1000 times.

The second property is the low overhead. Compared
to the batch algorithm, we have to calculate two more
distance matrices of LB and ED. However, as shown
above, this overhead time is inconsequential (just 0.08%
of the time of the batch algorithm for the “star light
curve” dataset).

6.2 Anytime Clustering
In this section we focus on evaluating the

monotonicity and diminishing returns properties (cf.
Section 2.2) of the anytime algorithm. We will also
demonstrate the generality of our anytime clustering
framework (Table 1) by using different types of
clustering algorithms.
6.2.1 Hierarchical Clustering

The output of hierarchical clustering is a tree
structure called a dendrogram, which allows the user to
view the clusters at different granularities. Hierarchical
clustering has been widely used in a variety of research
and application domains. For example, the authors of
[31] have shown that hierarchical clustering is an
effective tool for microarray data analysis to identify
similar genes in large datasets.

Here we considered the agglomerative hierarchical
clustering with average linkage (UPGMA), which
begins with M clusters and merges two most similar
clusters in each step till all items are merged.

For tests on each dataset, we first initialized aDTW
with ED, and compared four combinations of strategies:
updating aDTW by DTW_Ratio or not (line 1 of Table
1), and arranging DTW updating order by ED/LB or
randomly (line 5 of Table 1). The quality of the current
clustering is measured at the beginning (no DTW
calculations), just after the setup is complete (cf. Section
2.2.2); when a tiny fraction6 of the DTW distances have
been sampled; and at 10% steps as replacing distances in
aDTW with the true distances. We repeated all four

6 We pick 0.5% for consistency and simplicity, because the sampling
rate of DTW_Ratio varies for each dataset and each run (from 0.02%
to 0.25%).

anytime strategies on each dataset ten times, and report
the mean values. Figure 12 shows the results for the
“Two Patterns” dataset.

Ratio of Updated DTW

0

0.5

1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AR
I

0.2

0.6

1

CC
C

DTW_Ratio + ED/LB

DTW_Ratio + Random
Random

ED/LB

Figure 12: Quality of anytime hierarchical clustering
on the “Two Patterns” dataset. Four anytime
strategies are compared by Cophenetic Correlation
Coefficient (top) and Adjusted Rand Index (bottom).

We can see from Figure 12 that our championed
strategy “DTW_Ratio (approximation) + ED/LB
(updating order)” (the top line) beats all other three at
almost all time steps. The second observation is that the
two techniques using DTW_Ratio achieve a huge
improvement very early, when just 0.5% of all DTW
calculations have been performed. In contrast, the
clustering quality of “Random” (the bottom line) is still
very poor even after it has calculated 90% of all DTW
distances. Another interesting finding is that the
“ED/LB” updating order still helps without the boosting
by DTW_Ratio (the thicker dashed line); its clustering
quality surpasses or becomes very close to “DTW_Ratio
+ Random” after 10% of DTW calculations.

Because the performance of “ED/LB” and
“DTW/Ratio + Random” almost always resides between
the other two, to enhance the visual clarity, we will not
show their results in the rest of this paper. Moreover, as
different measurements (CCC and ARI as shown in
Figure 12, and see other three7 at [36]) are often highly
related, we will only show one measure in the plots
below to reduce redundancy. The reader can find the full
(all strategies compared by all measurements on all
eleven datasets) results at [36].

For four datasets discussed in Section 4, we show
their evaluation results measured by CCC in Figure 13.
We choose CCC because it considers all levels of
dendrogram. We see very similar results. “DTW_Ratio
+ ED/LB” achieves almost all possible improvement at
the very beginning and dominates “Random” all the
time. If we compare the first check point of four
datasets, we can find that the scores for “Two Patterns”
and “Face(all)” are much lower than those of the other

7 Including several measurements which do not require the final exact
DTW distance matrix, hence we have a heuristic to suggest when to
stop the anytime algorithm.

two (notably, also holds for other two clustering
algorithms, see Figure 14 and Figure 15).

0.4

0.7

1

0 0.2 0.4 0.6 0.8 1

Face(all)
0.2

0.6

1

0 0.2 0.4 0.6 0.8 1

CC
C

Two Patterns

CC
C

Ratio of Updated DTW

0.86

0.93

1

0 0.2 0.4 0.6 0.8 1

star light curves
0.94

0.97

1

0 0.2 0.4 0.6 0.8 1
Ratio of Updated DTW

wafer

Figure 13: Quality of anytime hierarchical clustering on
four large datasets (note we include “Two Patterns”
shown in Figure 12 for completeness). “DTW_Ratio +
ED/LB” (the solid/top line) beats “Random” (the
dashed/bottom line) all the time for all datasets.

This is probably due to the “highly-warping”
property of these two datasets, making the clustering
solutions by ED and DTW quite different.
6.2.2 K-medoids Clustering

K-medoids clustering belongs to another category of
clustering called partitional clustering, which tries to
find the best K partitions of the dataset. Instead of
averaging data points (which is still an open problem
under warping [24]) as K-means, K-medoids chooses a
data point from the cluster as its centroid (called
medoid). There exist several variations of K-medoids
based algorithms, and we have chosen the classic PAM
algorithm [15], since it does not require any parameter
settings beyond K. Although it is slower than
hierarchical and spectral clustering (as discussed below),
taking minutes rather than seconds, it is still dwarfed by
the DTW calculations (thus, Assumption 2 holds).

The quality of anytime K-medoids clustering
measured by ARI (CCC is only defined for hierarchical
clustering) on the same four datasets is compared in
Figure 14 (similar results on all other datasets can be
found at [36]):

0.98

0.99

1

0 0.2 0.4 0.6 0.8 1

wafer

Ratio of Updated DTW

0

0.5

1

0 0.2 0.4 0.6 0.8 1

AR
I Two Patterns

0

0.5

1

0 0.2 0.4 0.6 0.8 1

Face(all)

AR
I

0.7

0.85

1

0 0.2 0.4 0.6 0.8 1
Ratio of Updated DTW

star light curves

Figure 14: Quality of anytime K-medoids clustering on
four large datasets. “DTW_Ratio + ED/LB” (the
solid/top line) always beats “Random” (the
dashed/bottom line).

Again, we see the dominance of “DTW_Ratio +
ED/LB” in all four datasets. However, we do find it does
not work well enough for the “Two Patterns” dataset if
we consider the diminishing returns. We take some
comfort in noting this is the only synthetic dataset
among the four. Moreover, we have done additional

studies to further understand this outlying example, but
pushed our tentative explanations to [36] for brevity.
Another surprising observation is that for “Random”:
the quality of clustering can decrease even after
calculating more than 50% of DTW distances.
6.2.3 Spectral Clustering

The final clustering technique we considered is
spectral clustering, which transfers the original data into
a new space that is more amiable to clustering. Among
various implementations, we tested the most popular,
normalized spectral clustering by Ng et al. [23].

Figure 15 shows results of anytime spectral
clustering:

0

0.5

1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0 0.2 0.4 0.6 0.8 1

AR
I

Two Patterns
0

0.5

1

0 0.2 0.4 0.6 0.8 1

Face(all)

wafer

Ratio of Updated DTW

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
Ratio of Updated DTW

star light curves

AR
I

Figure 15: Quality of anytime spectral clustering on
four large datasets. “DTW_Ratio + ED/LB” (the solid
line) still shows a better performance than “Random”
(the dashed line) for all datasets.

In this set of experiments, two strategies appear
closer performance than in the above two clustering
algorithms we have tested. This might be because the
similarity graphs in the spectral clustering only model
local neighborhood relationships [1], and therefore less
DTW updating is required. For example, in the top two
plots of Figure 15, even for “Random” its ARI increases
to an almost perfect score after 10% of DTW
calculations, while this happens even faster for
“DTW_Ratio + ED/LB”. However, the latter is still
favorable especially when the time to calculate the full
DTW distance matrix is long. For example, it took 15
hours for the batch algorithm to calculate the DTW
distance matrix for the “Two Patterns” dataset, so 10%
of the calculation would still take as long as one and a
half hours, while our DTW_Ratio-based approximation
only took 7 minutes. Note that clusterings based on
these three methods are almost identical (see the top left
of Figure 15). We did the same experiment on a larger
“Two Patterns” dataset with 25,000 time series: In this
case the DTW_Ratio approximation reduced the time
from 15.7 days (by the batch algorithm) to 2.8 hours,
while still generating a very similar clustering result (see
a visual demonstration as a video or a sequence of high
resolution images at [36]).

7 DISCUSSION AND CONCLUSIONS
While we have focused on anytime clustering of

time series using DTW in this work, we believe that our
ideas may have applications to other expensive distance

measures for time series, such as LCSS, EDR, ERP,
SpADE and Swale [5], so long as both an upper and
lower bound can be defined for them. However, we do
not consider these in great detail for two reasons. First, it
allows a simpler and more concrete exposition of our
ideas, and second, a recent extensive empirical study has
suggested that DTW is at least competitive with all other
measures for the highly related problem of nearest
neighbor classification [5].

Likewise, our ideas may have utility for clustering
other data types, where the most effective distance
measure is expensive, but inexpensive upper and lower
bounds are available. Such examples could include
strings, where quadratic-time edit distance is often the
best measure, and simple bounds exist (The distance is
always at least the difference of the lengths of the two
strings. It is at most the length of the longer string), or
Earth Movers Distance which is quadratic but has tight
bounds available [2].

Beyond clustering, our distance matrix that can be
built in an anytime fashion can also be utilized in other
problems. For example, in [21] all pair-wise
correlations/distances for tens of thousands of time
series from data warehouses are needed for discovery of
patterns and anomalies in an application in data center
management. This problem may be amiable to a very
similar anytime framework. Again we leave such
considerations to future work in order to do the special
case justice in both presentation and evaluation.

We have shown the first example of an anytime
clustering algorithm for large datasets under the DTW
measure. Our algorithm has an inconsequential cost in
terms of additional time, but allows us to achieve most
of the benefit of the batch algorithm in a just a tiny
fraction of the time. We have tested on datasets with up
to 25,000 objects, which is at least an order of
magnitude larger than any other time series clustering
efforts that we are aware of. Finally we have made all
our code and data freely available to allow replication,
extension and adoption of our ideas.

8 REFERENCES
[1] von Luxburg, U. 2007. A Tutorial on Spectral

Clustering. Statistics and Computing 17(4).
[2] Assent, I., Wichterich, M., Meisen, T. and Seidl, T.

2008. Efficient similarity search using the Earth Mover's
Distance for large multimedia databases. ICDE 2008:
307-16.

[3] Bradley, P., Fayyad, U. and Reina, C. 1998. Scaling
clustering algorithms to large databases. In Proceedings
of the 4th KDD, pp 9-15.

[4] Chu, S., Keogh, E., Hart, D. and Pazzani, M. 2002.
Iterative Deepening Dynamic Time Warping. In 2nd

SIAM International Conference on Data Mining.
[5] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X. and

Keogh, E. 2008. Querying and mining of time series
data: experimental comparison of representations and
distance measures. PVLDB 1(2) :1542-1552.

[6] Eriksson, B., Dasarathy, G., Singh, A. and Nowak, R.
2011. Active Clustering: Robust and Efficient
Hierarchical Clustering using Adaptively Selected
Similarities. 14th ICAIS.

[7] Grass, J. and Zilberstein,S. 1996. Anytime algorithm
development tools. SIGART Artificial Intelligence. Vol
7, No. 2, ACM Press.

[8] Großmann, A., Wendt, M. and Wyatt, J. 2003. A Semi-
supervised Method for Learning the Structure of Robot
Environment Interactions. IDA 2003: 36-47

[9] Halkidi, M., Gunopulos, D., Vazirgiannis, M., Kumar,
N., Domeniconi, C. 2008. A clustering framework based
on subjective and objective validity criteria. TKDD 1(4).

[10] Hamagami, T. and Hirata, H. 2005. State space
partitioning and clustering with sensor alignment for
autonomous robots. IEEE Intl Conference on Systems,
Man and Cybernetics: 2655–60.

[11] Hofmann, T. and Buhmann, M.J. 1998. Active data
clustering. In Advances in Neural Information
Processing Systems, 10, 528-534.

[12] Hubert, L. and Arabie, P. 1985. Comparing partitions.
Journal of Classification, pp 193–218.

[13] Innis, J. L.; Heil, P.; Thompson, K.; Coates, D. W. 2004. An
Historical Light Curve of CF Octantis from Digitised Images
of the Bamberg Plate Archive. PASA 21:3, pp. 284-89.

[14] Jiang, D., Pei, J. and Zhang, A. 2003. Towards
interactive exploration of gene expression patterns. ACM
SIGKDD Explorations, 79–90.

[15] Kaufman, L. and Rousseeuw, P.J. 1990. Finding Groups
in Data: an Introduction to Cluster Analysis. Wiley.

[16] Keogh, E. 2002. Exact indexing of dynamic time
warping. In 28th International Conference on Very Large
Data Bases. pp 406-417

[17] Kim, S., Park, S. and Chu, W. 2001. An index-based
approach for similarity search supporting time warping
inlarge sequence databases. In: Proceedings of the 17th
ICDE, pp 607–614.

[18] Kranen, P., Assent, I., Baldauf, C. and Seidl, T. 2009.
Self-Adaptive Anytime Stream Clustering. ICDM 2009.

[19] Kranen, P., Günnemann, S., Fries, S. and Seidl, T. 2010.
MC-Tree: Improving Bayesian Anytime Classification.
SSDBM 2010: 252-269.

[20] Milligan, G. and Cooper, M. 1986. A study of the
comparability of external criteria for hierarchical cluster
analysis. Multivariate Behavioral Research, 21:441-458.

[21] Mueen, A., Nath, S. and Liu, J. 2010. Fast approximate
correlation for massive time-series data. In the
Proceedings of ACM SIGMOD 2010. pp. 171-182.

[22] Myers, K., Kearns, M. J., Singh, S. P. and Walker M. A.
2000. A Boosting Approach to Topic Spotting on
Subdialogues. ICML 2000.

[23] Ng, A., Jordan, M., and Weiss, Y. 2001. On spectral
clustering: analysis and an algorithm. NIPS 2001.

[24] Niennattrakul, V. and Ratanamahatana, C.A. 2007. On
Clustering Multimedia Time Series Data Using K-Means
and Dynamic Time Warping. MUE 2007.

[25] Oates, T., Schmill, M., and Cohen, P. 2000. A Method
for Clustering the Experiences of a Mobile Robot that
Accords with Human Judgments. AAAI/IAAI: 846-851.

[26] Ratanamahatana, C. and Keogh, E. Three Myths about
Dynamic Time Warping Data Mining. SDM 2005.

[27] Rebbapragada, U., Protopapas, P., Brodley., C. E. and
Alcock, C. 2009. Finding Anomalous Periodic Time
Series: An Application to Catalogs of Periodic Variable
Stars, Machine Learning, Vol. 74, Iss 3.

[28] Sart, D., Mueen, A., Najjar, W., Niennattrakul, V. and
Keogh, E. 2010. Accelerating Dynamic Time Warping
Subsequnce Search with GPUs and FPGAs. ICDM 2010.

[29] Salvador, S. and Chan, P. 2004. FastDTW: Toward
Accurate Dynamic Time Warping in Linear Time and
Space. KDD Workshop on Mining Temporal and
Sequential Data, pp. 70-80.

[30] Seidl, T., Assent, I., Kranen, P., Krieger, R. and
Herrmann, J. 2009. Indexing density models for
incremental learning and anytime classification on data
streams. EDBT 2009: 311-322.

[31] Seo, J. and Shneiderman, B 2002. Interactively
Exploring Hierarchical Clustering Results. IEEE
Computer 35(7): 80-86.

[32] Shieh, J. and Keogh, E. 2008. iSAX: Indexing and
MiningTerabyte Sized Time Series, SIGKDD. p.623-31.

[33] Shieh, J. and Keogh, E. 2010. Polishing the Right Apple:
Anytime Classification Also Benefits Data Streams with
Constant Arrival Times. ICDM 2010.

[34] Sokal, R. and Rohlf, F.J. 1962. The Comparison of
Dendrograms by Objective Methods. Taxon 11: 33-40.

[35] Steinley, D. Properties of the Hubert-Arabie adjusted
Rand index. Psychol Methods, 2004, 9(3): 386-96.

[36] Supporting website.
www.cs.ucr.edu/~qzhu/anytimeclustering/

[37] Templeton, M. 2001. Archival Data Digitization -- Work
In Progress. accessed 6/4/11. www.aavso.org/archival-data-
digitization-work-progress/

[38] Keogh, E., Zhu, Q., Hu, B., Hao. Y., Xi, X., Wei, L. and
Ratanamahatana, C. A. 2011. The UCR Time Series
Classification/Clustering Homepage.
www.cs.ucr.edu/~eamonn/time_series_data/

[39] Ueno, K., Xi, X., Keogh, E. and Lee, D.J. 2006. Anytime
Classification Using the Nearest Neighbor Algorithm
with Applications to Stream Mining. ICDM 2006.

[40] Witten, I.H. and Frank, E. 2005. Data Mining: Practical
Machine Learning Tools and Techniques.

[41] Xi, X., Keogh, E., Shelton, C., Wei, L. and
Ratanamahatana, C.A. 2006. Fast time series
classification using numerosity reduction. In Proc of the
23rd ICML. p.1033-1040.

[42] Yang, Y., G.I. Webb, K. Korb, and K-M. Ting 2007.
Classifying under Computational Resource Constraints:
Anytime Classification Using Probabilistic Estimators.
Machine Learning 69(1). pp. 35-53.

[43] Yi, B., Jagadish, H. and Faloutsos, C. 1998. Efficient
retrieval of similar time sequences under time warping.
In:ICDE 98, pp 23–27

[44] Ye, L., Wang, X., Keogh, E. and Mafra-Neto, A. 2009.
Autocannibalistic and Anyspace Indexing Algorithms
with Application to Sensor Data Mining. SDM 2009.

[45] Zilberstein, S. and Russell, S. 1995. Approximate
reasoning using anytime algorithms. In Imprecise and
Approximate Computation, Kluwer Academic
Publishers..

