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ABSTRACT 
Given the ubiquity of time series data, the data mining 
community has spent significant time investigating the 
best time series similarity measure to use for various 
tasks and domains. After more than a decade of 
extensive efforts, there is increasing evidence that 
Dynamic Time Warping (DTW) is very difficult to 
beat. Given that, recent efforts have focused on making 
the intrinsically slow DTW algorithm faster. For the 
similarity-search task, an important subroutine in many 
data mining algorithms, significant progress has been 
made by replacing the vast majority of expensive DTW 
calculations with cheap-to-compute lower bound 
calculations. However, these lower bound based 
optimizations do not directly apply to clustering, and 
thus for some realistic problems, clustering with DTW 
can take days or weeks. 
In this work, we show that we can mitigate this 
untenable lethargy by casting DTW clustering as an 
anytime algorithm. At the heart of our algorithm is a 
novel data-adaptive approximation to DTW which can 
be quickly computed, and which produces 
approximations to DTW that are much better than the 
best currently known linear-time approximations. We 
demonstrate our ideas on real world problems showing 
that we can get virtually all the accuracy of a batch 
DTW clustering algorithm in a fraction of the time. 
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1  INTRODUCTION 
The extraordinary ubiquity of time series data has 

resulted in the data mining community spending 
significant resources in investigating algorithms to mine 
time series archives. Much of this effort has focused on 
finding the best distance measure to use for the given 
domain. After more than a decade of extensive research, 
there is increasing evidence that Dynamic Time 
Warping (DTW), which includes Euclidean Distance 
(ED) as a special case, is very difficult to beat [5][41]. 
Given this, significant attention has focused on making 
the intrinsically quadratic-time DTW algorithm faster 
[5][16][17][43]. For the problem of query-by-content, 
significant progress has been made by replacing the vast 
majority of expensive DTW calculations with cheap-to-

compute lower bound calculations. However, these 
lower bound based optimizations do not directly apply 
to clustering, and thus for some realistic problems, 
clustering with DTW can take days or weeks. As a 
concrete example, consider the two following real world 
problems: 
� A star light curve is the measurement of the 

brightness of a celestial object as a function of time 
[13]. The study of light curves in astronomy has led 
to the discoveries of pulsars, extra solar planets, 
supernovae, the rate of expansion of the universe, 
etc. In addition to automatically recorded digital star 
light curves, there are over 100 million analogue 
observations from archives dating back 130 years 
[37]. One stage of the digitization process involves 
clustering the data to look for outliers [13], and 
recent work has forcefully shown that  DTW is much 
better than ED for this task [28]. However, as we 
shall show below, clustering a mere 9,236 curves 
under DTW takes about 127 days using a batch 
algorithm, a severe bottleneck in digitization efforts. 

� A fundamental idea in autonomous robotics is that 
the robot should learn to adapt to its environment by 
clustering its experiences and using those clusters as 
the basis of classification and/or outlier detection 
algorithms [8][10][25][44]. For at least a decade, 
DTW has been the distance measure of choice in this 
domain [8][25]. However, in general we cannot 
anticipate how long the robot will have to do 
clustering before external events force it to invoke a 
classification decision, thus an anytime framework is 
ideal in this context.    
In this work, we show that we can mitigate the 

untenable lethargy of DTW clustering  by casting it as 
an anytime algorithm [7][45]. Anytime algorithms are 
algorithms that trade execution time for quality of 
results. In particular, an anytime algorithm always has a 
best-so-far answer available, and the quality of the 
answer improves with execution time. The user may 
interact with the clustering, examining an answer at any 
time and choose to terminate, temporarily suspend, or 
continue the algorithm’s execution until completion 
[33]. For example, in the star light curve scenario above, 
rather than waiting 127 days for the batch algorithm to 
finish, the user may temporarily suspend the algorithm 
after a few hours, glance at the approximate solution and 



if she sees obvious outliers, she can then examine these 
outliers offline while the resumed algorithm runs in the 
background.  

The idea of interactively exploring clustering results 
has been shown to be useful for at least a decade [31], 
but thus far has been limited to Euclidean distance or 
other inexpensive distance measures. 

At the heart of our technique for porting DTW 
clustering to an anytime framework is a novel data-
adaptive approximation to DTW which can be quickly 
computed, but produces approximations to DTW which 
are much closer than any of the known linear-time 
approximations [29]. Our ideas are general enough to be 
used for hierarchical, partitional or spectral clustering; 
and the overhead (the extra time over the batch 
algorithm that our anytime algorithms take if allowed to 
run to completion) is inconsequential. The fundamental 
contributions of our work are: 
� A novel approximation to Dynamic Time Warping, 

which is both fast to compute and accurate, by 
exploiting the domain dependent relationship 
between DTW and its upper and lower bounds.  

� A heuristic ordering function that tells the anytime 
algorithm the best order in which calculate the exact 
DTW distances. In essence, this ordering function 
predicts which of the currently approximated 
distances are most likely to benefit from being 
replaced by exact DTW calculations.  

The rest of the paper is organized as follows. In 
Section 2 we review related work and give three 
assumptions that inform our ideas. In Section 3 we 
introduce the framework of our anytime clustering 
algorithm, expanding the discussion of the two main 
subroutines in Section 4 and Section 5. We perform an 
extensive empirical evaluation on real datasets in 
Section 6, and offer conclusions in Section 7. 

2 ASSUMPTIONS AND RELATED WORK 
We begin with a statement of the assumptions that 

inform our work. We denote the number of time series 
to cluster as M and their length as N1. 
2.1 Assumptions 

Assumption 1: The time taken to cluster the data is 
negligible compared to the time to calculate all 
required DTW distances. 

As a concrete example, once we are given a full 
distance matrix for the “start light curves” dataset with 
M = 9,236 and N = 1,024, hierarchical clustering with 
average linkage only takes 4 seconds, whereas it takes 
127 days to actually fill the matrix with DTW distances. 

                                                           
1 For datasets with different length of time series, we can normalize 
them to the same length with little or no impact on accuracy [26]. 

This assumption not only motivates our work (if 
DTW could be quickly computed, the batch algorithm 
would suffice), but allows the desirable interruptibility 
property of anytime algorithms (cf. Section 2.2). 

Note that this assumption includes the implicit 
assumption that the problems we are interested in are 
CPU constrained, not I/O constrained. There is 
significant research on clustering with (relatively) 
inexpensive distance measures on datasets that are too 
large to fit into main memory [3]. In contrast, our 
distance measure (DTW) is so expensive that even when 
the amount of data we have is trivially retained in main 
memory, the time needed to cluster may be on the order 
of weeks.  

Assumption 2: Both a lower bound and upper bound 
to the true DTW distance can be calculated in a time 
that is negligible compared to the time taken to 
calculate DTW.  

This assumption is not difficult to satisfy: while the 
time complexity for DTW is O(N2), several lower 
bounds (LB_Keogh [16], LB_Kim [17], LB_Yi [43], 
etc.) are available which can be calculated in just O(N). 
Moreover, the Euclidean distance is an upper bound to 
the DTW, and it can also be calculated in O(N). As we 
will show in Section 4, a very accurate approximation to 
DTW can be obtained based on combining lower and 
upper bounds.  

Assumption 3: DTW can produce superior clustering 
results for time series than the Euclidean distance.  

Clearly if this assumption is not true, then we are 
wasting our time trying to cast DTW clustering into an 
anytime framework, since we should just do efficient 
clustering with the Euclidean distance. It has been 
shown recently that for one-nearest neighbor 
classification, on 38 diverse datasets, that DTW 
significantly outperforms Euclidean distance on a 
majority of datasets [5]. DTW achieves its robustness by 
allowing non-linear alignments between two time series, 
as shown in Figure 1.left. 
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Figure 1: left) The DTW alignment between two Eclipsing 
Binary (EB) star light curves shows an intuitive peak-to-
peak matching. right) Three star light curves clustered 
under the DTW distance with complete linkage. The two 
eclipsing binaries are correctly linked together, in 
contrast to Euclidean clustering (cf. Figure 2) 

For such similar but locally out of phase time series, 
however, the Euclidean distance would report an 
unexpectedly large distance. We illustrate this in Figure 
2.left for star light curves also shown in Figure 1.left. If 
we contrast the clusterings obtained in these two figures, 



we can gain some intuition as to the utility of DTW for 
clustering.  
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Figure 2: left) Time series are aligned one-to-one by 
the Euclidean distance, the distance reported is 
proportional to the length of the gray hatch lines.  
right) Three star light curves clustered under the 
Euclidean distance with complete linkage are 
subjectively and objectively incorrect. We would have 
expected that the two Eclipsing Binaries (EB) would 
link before either linked with the Cepheid (Cp). 

However, it has also recently been shown that as 
datasets get larger, the difference in performance 
between DTW and Euclidean distance converges for 
one-nearest neighbor classification [32]. Presumably 
this is because an item to be classified is more likely to 
find a close match without the need for excessive 
warping as the dataset gets larger. Thus, while we can 
show that Euclidean distance can produce poor 
clustering results for small datasets, as in Figure 2.right, 
we must be careful assuming this can happen for larger 
datasets. This assumption is the only one not directly 
answered by the current literature. Therefore, we tested 
all datasets containing at least 2,000 time series from the 
UCR repository [38], which contains the majority of all 
publicly available, labeled time series datasets in the 
world. We applied three clustering algorithms to eleven 
large datasets under Euclidean and DTW distance 
respectively, and compared the results against the 
ground truth by Adjusted Rand Index [12]. The results 
are visually summarized in Figure 3.  
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Figure 3: DTW vs. Euclidean distance tested using 
three types of clustering algorithms. The clustering 
results are measured by Adjusted Rand Index (ARI). 
Each point corresponds to one dataset with one 
clustering algorithm. 

As we can see, DTW won the majority of times, and 
had a very close score even when it lost (cf. [36] for all 
raw numbers). Nevertheless, note that our assumption 
only postulates DTW’s superiority for clustering of 

some real dataset(s); it is not necessary that DTW 
always outperforms Euclidean distance. 

It is worth noting that once the above assumptions 
are satisfied, our anytime algorithm framework does not 
make any additional assumptions about the concrete 
clustering algorithms or objective functions that need to 
be optimized, and is thus very generally applicable.  

2.2 Related Work 
2.2.1 DTW Approximation 

The time taken to compute the best alignment of two 
time series as shown in Figure 1.left, and thus the DTW 
distance, is O(N2), we refer the reader to [16] and the 
references therein for more details on the DTW. 

Because of the long known utility of DTW, and the 
fact that exact algorithm is intrinsically slow, there has 
been at least two decades of effort to improve its 
performance by approximation [4][29]. Note that these 
efforts are orthogonal to the efforts to create tight lower 
bounds of DTW [5]. While lower bounds can be seen as 
special cases of approximation, they are designed for a 
single purpose, allowing lower-bound based indexing 
[5][16][17][43]. These lower bound functions return a 
“distance” of zero for most sequences that are somewhat 
similar. This is not a problem within the context of a 
lower-bound based nearest neighbor search, but clearly 
lacks fine discrimination power for clustering.  

Most of the work on approximating DTW for direct 
use in data mining algorithms leverages of the idea of 
doing DTW on a reduced dimensionality approximation 
[29], possibly at multiple levels of reduced 
dimensionality, using the results at a coarse level of 
approximation to seed the search at the next level [4]. 
This idea is attractive because if we down sample the 
data by a factor of C, the speedup obtained is 
approximately C2. 

However, all such methods are either still O(N 2) but 
with a lower constant factor, or O(N) but with such high 
constant factors that they may be slower than fast O(N 2) 
methods. In either case, none of methods we are aware 
of produce a good approximation to the true DTW in 
anything close to less than one-tenth of the time for full 
DTW algorithm. As we shall see in Section 4.1, our 
method can produce very accurate approximations to the 
true DTW for diverse datasets in a tiny fraction of the 
time needed for the full DTW algorithm. 
2.2.2 Anytime Algorithms 

As illustrated in Figure 4.left, anytime algorithms are 
algorithms that trade execution time for quality of 
results [45]. In particular, after some small amount of 
setup-time an anytime algorithm always has a best-so-
far answer available, and the (expected) quality of the 
answer improves with execution time, until the anytime 
algorithm eventually terminates with the same answer 
that the batch algorithm would have achieved.   Because 
data miners are interested in increasingly large datasets 



and, at least in some cases, increasingly complex 
analysis of these datasets, there has been a recent 
explosion of interest in using anytime (and anyspace 
[44]) algorithms for data mining [19][30][33][39][42].   
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Figure 4: left) An abstract illustration of an anytime 
algorithm. Note that the quality of the solution keeps 
improving up to time S, when the algorithm is interrupted 
by the user. right) A comparison of possible performances 
of anytime algorithms. Here the top line shows an 
algorithm that dominates the other two at all times.  

The most desirable properties of anytime algorithms 
have been outlined by Zilberstein and Russell [45]: 
� Interruptibility: After some small amount of setup 

time, the algorithm can be stopped at any time and 
provide a tentative or partial answer. 

� Monotonicity: The quality of the result is a non-
decreasing function of computation time. Note that 
we desire this to be true on average; however, it is 
not necessary that on any particular run the quality 
must be strictly monotonic.      

� Measurable quality: The quality of an approximate 
result can be determined. Note that it is only 
necessary that we can measure the quality in the 
same sense as we could measure the quality of the 
batch algorithm. Fully measuring the 
quality/validity of a clustering solution is still an 
area of active research [9].       

� Diminishing returns: The improvement in solution 
quality is largest at the early stages of computation. 

� Preemptability: The algorithm can be suspended 
and inspected, and then resumed with minimal 
overhead. 

� Low Overhead: The time taken by the anytime 
algorithm to run to completion (assuming it is not 
interrupted) must be only slightly longer than the 
time taken by the batch algorithm.  

Figure 4 illustrates many of these desirable 
properties. An obvious question is how can we compare 
the performance of several rival candidate anytime 
algorithms? In the best case, a single algorithm may 
dominate its rivals at every time point, as in Figure 
4.right with the bold/red line. However, if we ignore this 
line, there are two hypothetical algorithms dominating 
each other at different times. In such a case, we would 
generally prefer the one which gains the most 
improvement at the beginning of the run.  
2.2.3 Anytime Clustering 

In contrast to anytime classification [19][22][30] 
[33][39][42], anytime clustering has gained much less 
attention from the data mining community. In [11] the 
authors proposed a technique called “active data 

clustering”, which actively selects new distances to 
calculate, and uses tentative knowledge to estimate the 
relevance of missing data. However, they defined their 
own objective function and a special clustering method 
to minimize it, which limits its application. One of the 
most exciting ideas in this area recently appeared in [6], 
where the authors considered the problem of how to 
reconstruct the hierarchical clustering based on just a 
small subset of all pair-wise distances. The authors 
formally prove that if the “tight clustering” (TC) 
condition (the distance between two items in the same 
sub-tree is always smaller than the distance from each of 
them to any item out of the sub-tree) holds, the exact 
clustering of M items can be determined with 3MlogM 
distance calculations. Strictly speaking, their method is 
not presented as an anytime algorithm; however, it could 
trivially be seen as such, although the 3MlogM 
calculations that must be done would result in a long 
setup time. Moreover, it is not clear how the technique 
will work for non-metric distance functions (such as 
DTW), and we desire a more general technique that also 
allows partitional or spectral clustering.  

Finally there are several research efforts that are 
titled anytime clustering, but are perhaps better 
understood as incremental clustering, suggesting 
techniques to maintain clusters in the face of newly 
arriving objects [18].  

In summary, we are not aware of any generic 
techniques that allow for anytime hierarchical/ 
partitional/spectral clustering under expensive non-
metric distance measures such as DTW.  
2.2.4 Quality Measurement of Clusterings  

We need to measure the quality of clustering in two 
contexts. First, we simply need to demonstrate the 
monotonicity and diminishing returns of our algorithm 
by creating plots like Figure 4. Second, to allow 
interactive clustering [14][31], it is useful (but not 
necessary) to have a quantitative measure of the current 
clustering. 

The former requirement is easy to deal with. We can 
plot the quality of the approximate solutions at every 
stage of the anytime algorithm by comparing it to the 
final solution based on the exact DTW. After extensive 
empirical and theoretical evaluation, the authors of [20] 
recommended Adjusted Rand Index (ARI) as the most 
robust index to measure the similarity of two 
clusterings, and it has become one of the most widely 
adopted validation measurements [35]. The expected 
value of ARI is zero if the current solution is a random 
clustering, and it reaches its maximal value of one when 
the current clustering is identical to the final result. We 
refer the reader to [12] for more details of ARI. 

While we will focus on ARI for the quality 
measurement in Section 6, to minimize the danger of 
producing optimistic results by using only a single 



measure, we also tested several other widely used 
measurements, such as the cophenetic correlation 
coefficient [34] which measures the linear correlation of 
pair-wise distances between two dendrograms, 
normalized mutual information [40] which compares 
two clusterings from an information theoretical 
perspective, etc. We find these measurements are highly 
related, and we thus mostly omit redundant plots for 
brevity. The interested reader can find all results in our 
supporting website [36].  

As for the problem of evaluating the quality of 
clustering when a user preempts a run of the anytime 
algorithm, there are many possibilities available, from 
visual inspection (surprisingly scalable up to at least 
10,000 objects for hierarchical clustering [31]) to 
various statistical tests [9].  

3  ANYTIME CLUSTERING FRAMEWORK 
The basic outline of our anytime clustering 

algorithm is described in Table 1. The first three lines in 
Table 1 correspond to the setup stage of the anytime 
algorithm (shown as the gray region in Figure 4). The 
algorithm can only be interrupted after the completion of 
this stage. As the reader may recall from the 
interruptability property (cf. Section 2.2), this stage 
should only last for a very short period of time. We first 
build an approximation of the DTW distance matrix2 
(aDTW) in line 1. As DTW is a symmetric measure, the 
matrix is saved as an upper triangular matrix in the row-
major order. Once the distance matrix is available, 
clustering (either hierarchical, partitional, or spectral) is 
performed to obtain the first approximate solution we 
can report to the user (line 2). 

Table 1. Basic framework for anytime clustering  
Algorithm [Clusters] = AnytimeClustering(Dataset) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

aDTW = BuildApproDistMatrix(Dataset); 
Clusters = Clustering(aDTW,Dataset); 
Disp(‘Setup is done, interruption is possible’); 
 
O = OrderToUpdateDTW(Dataset); 
for i = 1:Length(O) 

aDTW(O(i)) = DTW(Dataset,O(i));  
if UserInterruptIsTrue() 

       Clusters = Clustering(aDTW,Dataset); 
       if UserTerminateIsTrue(Clusters) 
          return; 
       endif  

endif 
endfor 
Clusters = Clustering(aDTW); 

Lines 6 to 14 calculate the true DTW distances to 
incrementally replace the values in aDTW, in the order 
specified in O obtained in line 5. During this stage, 
clustering is performed (line 9) only if the user requests 
an answer (line 8).  If the user interrupts the algorithm in 

                                                           
2  Note that although we approximate the full distance matrix, our 
algorithm can also be applied to those clustering methods not requiring all 
pair-wise distances (once Assumption 1 holds), where the algorithm can be 
terminated if every queried distance from aDTW is the exact distance. 

this manner, she has a choice to terminate the algorithm 
after checking the current clustering result (line 10). 
This may happen because the approximate solution 
already satisfies the user’s evaluation criteria; or in 
contrast, the user might believe that there is no hope to 
obtain a meaningful clustering even if the full DTW 
matrix had been calculated. For example, she sees a very 
poor clustering, and realizes that she forgot to normalize 
the data, or that the time series smoothing parameter she 
used was too aggressive, etc. 

When all (M×(M-1))/2 distances have been updated, 
the aDTW matrix becomes the true DTW matrix 
(tDTW), and we have the same answer (line 15) as the 
batch algorithm. 

Given this framework, there are just two things we 
must define: how do we create the approximate DTW 
matrix aDTW required in line 1, and how we define the 
update ordering list O in line 5? Note that both these 
decisions are independent of the choice of which 
clustering algorithm the user will use (lines 2 and 9). 

Before giving our solutions to these two sub-
problems in the next two sections, we would like to 
emphasize that the proposed framework in Table 1 is 
generic enough to support virtually all distance-based 
clustering algorithms with little or no modifications. 

4 APPROXIMATION OF THE DTW 
DISTANCE MATRIX 

In order to build an approximation of the DTW 
distance matrix (aDTW) as required in line 1 of Table 1, 
we have many potential choices. We could initialize 
aDTW with the Euclidean distance, or with one of the 
many lower bounds to DTW proposed in the literature 
such as LB_Keogh [16], LB_Kim and LB_Yi [43], or 
with the DTW distance calculated on downsampled 
versions the time series [29], etc.  

The most critical constraint on the plethora of 
choices we have is that the time to build aDTW must be 
a tiny fraction of the time to calculate all DTW 
distances; otherwise, this would impose a long setup 
time. Fortunately, as noted in Section 2.1, there are both 
lower and upper bounds available to DTW that can be 
computed in O(N). Among the lower bounds, LB_Keogh 
(denoted as LB for short below) has been shown to be 
the tightest lower bound in [5] and elsewhere, and 
Euclidean distance (ED) is a tight upper bound to DTW 
and can also be computed in O(N). 

As illustrated in Figure 5, the DTW distance 
between any two sequences can be bound between LB 
and ED. 
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Figure 5: The DTW distance can be bounded by fast-
to-compute upper and lower bounds.  

While either bound could be separately used as 
approximations to DTW, a fundamental contribution of 
this work is to show that we can derive a much more 
accurate approximation by using these two bounds 
together. We propose to learn the best “mixing weight” 
of the upper/lower bounds by sampling a tiny fraction of 
the true DTW distances. We begin by defining the 
DTW_Ratio for a pair of time series (T1, T2) as: 
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DTW_Ratio(T1,T2) gives the relative position of 
DTW(T1,T2) between its lower and upper bounds. We 
can readily notice from (1) that it equals zero when 
DTW(T1,T2) = LB(T1,T2); it equals one when 
DTW(T1,T2) = ED(T1,T2); and the range of 
DTW_Ratio(T1,T2) is constrained to [0,1] (cf. Figure 5). 
Assume for the moment that the DTW_Ratio for two 
time series is known, and that we have calculated the 
corresponding LB and ED, then we can rearrange (1) to 
solve for the DTW distance: 
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Based on this we have transformed the problem of 
estimating DTW distance for each pair of time series to 
the problem of estimating the appropriate DTW_Ratio. 
Let us preview the results in the next section by 
considering three possibilities for the DTW_Ratio. 
� If it is the case that the DTW_Ratio between any 

two pairs of time series is about the same value for 
any dataset, then we could find this value once and 
have a universal O(N) (since both LB and ED can 
be calculated in O(N)) estimator of DTW for any 
dataset. Regrettably, as we shall see, this is not true. 

� If it is the case that the DTW_Ratio between any 
two pairs of time series is about the same value for 
a particular dataset, then we could learn that value 
for just that particular dataset, and have a domain 
specific O(N) estimator of DTW. Unfortunately, as 
we shall see, this is only sometimes true. 

� If the DTW_Ratio between any two pairs of time 
series has some distribution that depends on LB and 

                                                           
3 We define DTW_Ratio(T1,T2) = 0 if ED(T1,T2) - LB(T1,T2) = 0. 

ED, and if we can cheaply estimate this distribution, 
we have a O(N) estimator of DTW for that domain. 

In the following section we flesh out these ideas. 

4.1 Observations about the DTW_Ratio 
Assume for the moment that we are only allowed to 

use a single value, r,  to approximate all DTW_Ratios in 
a given dataset. We can use the ubiquitous Root Mean 
Square Error (RMSE) to measure the quality of the 
estimation: 
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RMSE has a unique minimum when setting r to the 
mean of all DTW_Ratios (also defined as the standard 
deviation of DTW_Ratios); however, how well this one-
size-fits-all mean estimator works (i.e., how small RMSE 
is) depends on the distribution of DTW_Ratio values. 
The ideal case would be if they were all in a tightly 
restricted range, since the mean value would be a good 
approximation to all values. However, if the distribution 
of the DTW_Ratios is large, then the wide spread of 
their values will result in a lack of precision in the 
estimation of the DTW values.  

To understand these distributions, we examined all 
large datasets from the UCR archive [38], plotting the 
histograms of all (M×(M-1))/2 DTW_Ratios for two of 
them in Figure 6.   
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Figure 6: left) Histograms of DTW_Ratios of all pairs of 
time series for two large datasets from [38]. left.top) 
“Two Patterns” dataset containing 5,000 samples. 
left.bottom) “Face(all)” dataset containing 2,250 samples. 
right) The histograms can be seen in the context of the 
upper and lower bounds, see also Figure 5. 

As we can see in Figure 6, in these two cases both 
distributions form a unimodal distribution with most of 
the values close to the mean (i.e, with low variance). We 
find that the RMSE of the one-size-fits-all mean 
estimator is 0.11 and 0.10, respectively. This result 
suggests that, in spite of its simplicity, a reasonable 
approximation  technique is simply to use the mean. To 
summarize our findings thus far: 

Observation 1: The one-size-fits-all mean estimator can 
be a good approximation to all DTW_Ratios from a 
single dataset. 

Do the DTW_Ratio values always have a unimodal 
distribution with a small variation for all datasets? 



Unfortunately we find this is not the case. We show two 
typical counterexamples in Figure 7: 

0 0.2 10.4 0.6 0.8 0 0.2 10.4 0.6 0.8  
Figure 7: Histograms of DTW_Ratios of all pairs of time 
series for two large datasets, which are against 
Observation 1. left) “star light curves” dataset [27] (9,236 
samples)  right) “wafer” dataset [38] (7,174 samples) 

As we can see, the histogram in Figure 7.left is 
heavily right-skewed and the one in Figure 7.right 
clearly forms a bimodal distribution. For such cases, the 
above one-size-fits-all mean estimator is much less 
accurate: their RMSE are 0.19 and 0.25 respectively. 

To obtain some intuition as to how we might 
improve the current estimation model, let us consider a 
toy example.  Suppose we have nine pairs of time series, 
whose DTW_Ratios are {0.3, 0.2, 0.4, 0.5, 0.4, 0.2, 0.3, 
0.1, 0.3}. Using the one-size-fits-all mean estimator, we 
set r to their mean 0.3 and obtain a RMSE of 0.12, as 
illustrated in Figure 8.a. 
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Figure 8: Illustration of different mean estimators. a) 
one-size-fit-all mean estimator. b), c) and d) are 
multiple-for-all (k=3) mean estimators based on 
optimal, random and approximate sorting, respectively. 

Suppose instead that we are allowed to use multiple, 
say k (1 < k ≤ n), values to approximate all 
DTW_Ratios? In this case, all pairs of time series are 
divided into k equal-size 4  groups and each of the k 
groups is assigned its own estimated value r. If k = 3, it 
is simple to find the optimal grouping is {{0.1, 0.2, 0.2}, 
{0.3, 0.3, 0.3}, {0.4, 0.4, 0.5}}, which reduces the 
RMSE to 0.04 by setting each r to the mean value of the 
corresponding group, as shown in Figure 8.b.  

Are we guaranteed to obtain a smaller RMSE if we 
use this multiple-for-all mean estimator? The answer is 
no. Figure 8.c shows that  the grouping {{0.1, 0.3, 0.5}, 
{0.2, 0.3, 0.4}, {0.2, 0.3, 0.4}} generates the same 
RMSE as the one-size-fits-all mean estimator. The reader 
may have noticed that the difference between the above 
two groupings is that the optimal one (Figure 8.b) is 

                                                           
4  A size-adaptive division is also possible; we use equal-size for 
simplicity because it achieves very good approximation (see 6.1) and 
tentative tests suggest the room for improvement is marginal. 

based on the sorted DTW_Ratios. It is easy to see why 
the sorting-based grouping works better, since the 
sorting puts closer values into the same group, and thus 
reduces their differences to the mean of the group. 
However, the actual values of DTW_Ratios are 
unknown (recall that our task is to estimate them). It 
seems that the sorting heuristic cannot be applied 
because of this chicken-and-egg paradox.  

Perhaps all is not lost; we can ask: could an 
approximate sorting of DTW_Ratios still help?  For 
clarity, consider an approximate sorting based grouping 
for our toy example: {{0.1, 0.2, 0.3}, {0.2, 0.3, 0.4}, 
{0.3, 0.4, 0.5}}, as shown in Figure 8.d. It is clear that, 
although approximate, the sorting still helps to make 
values in the same group closer, and therefore the RMSE 
is reduced to 0.08. 

Fortunately, we can obtain a good approximate 
sorting of DTW_Ratios based on only ED and LB. We 
first divide the numerator and denominator of the right 
part of (1) by LB(T1,T2) to obtain: 
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From (4), it is clear that the DTW_Ratio depends on 
two distinct quantities: the ratios DTW(T1,T2)/LB(T1,T2) 
and ED(T1,T2)/LB(T1,T2). To explore their properties, 
we randomly sampled 1,000 pairs from the “star light 
curves” dataset and plotted their LB distances in 
increasing order together with respective DTW and ED 
values in Figure 9. 
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Figure 9: ED, DTW and LB of 1,000 randomly 
sampled pairs of time series from “star light curves” 
dataset, in the increasing order of LB.  

We can observe that: 
� LB is a tighter bound to DTW than ED, and thus 

DTW/LB is usually much smaller than ED/LB. 
� The curve of DTW is smoother than the curve of 

ED, which demonstrates that the variance of 
DTW/LB is lower than ED/LB (both curves are 
ordered by LB). 

This pattern is observed in almost all large datasets 
we have checked (see also Figure 11). Therefore, the 
DTW_Ratio in (4) tends to be largely determined by the 
denominator term ED(T1,T2)/LB(T1,T2), and we can use 
this intuition to approximately sort the DTW_Ratios.  

We tested the multiple-for-all mean estimator with 
100 groups based on the approximate sorting, and 
compared the result to the one-size-fits-all mean 
estimator. RMSE is reduced from 0.19 to 0.12 for the 
“start light curves” dataset and from 0.25 to 0.13 for the 



“wafer” dataset5. Before moving on, we summarize our 
new findings about DTW_Ratio as follows: 

Observation 2: We can further reduce RMSE by the 
multiple-for-all mean estimator based on the 
approximate sorting of DTW_Ratios. 

4.2 Estimating the DTW_Ratio 
For the multiple-for-all mean estimator proposed 

above, we had set the number of groups to 100. This is 
the only important parameter of our approximation 
method. To explore its sensitivity to RMSE, we tested on 
all four datasets discussed in Section 4.1 using different 
numbers of groups. Figure 10 shows the results: 
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Figure 10: RMSE vs. Number of Groups. Tested on four 
large datasets using different number of groups (one 
group corresponds to the one-size-fits-all mean 
estimator). RMSE varies little when number of groups is 
more than 16 for all datasets. Note log scale in x axis. 

The plot clearly suggests that the number of groups 
is not critical to the estimation error of our multiple-for-
all mean estimator, once it is larger than, say 16. 
Therefore, for the rest of this paper, we have fixed the 
number of groups to 20.  

There is one more issue to resolve the mean 
estimator: how do we obtain the mean of DTW_Ratios 
for each group? We achieve this by sampling. Due to the 
central limit theorem, the mean of a large collection of 
DTW_Ratios is approximately normally distributed, 
thus the mean of randomly sampled DTW_Ratios 
follows a Student’s t distribution. A t-test can be applied 
to tell if the true mean falls in any given confidence 
interval. For all the remaining experiments in this paper, 
we sample DTW_Ratios incrementally until the true 
mean falls in [sample mean-0.01, sample mean+0.01] 
with a 90% confidence.  

As we shall show in Section 6.1, the number of 
sampled DTW_Ratios (i.e., full DTW calculations) is 
only a tiny portion for all datasets we tested. 
Furthermore, the property of t-test tells us that the 
number of sampled DTW_Ratios for a given confidence 
interval is only related to the standard deviation of the 
sampled DTW_Ratios, not the size of the data set.  

5 GENERAL ORDERING HEURISTICS 
Having initialized with a good approximation of the 

DTW distance matrix, the next step is to update each 
                                                           

5 We did extensive experiments on diverse large datasets, and all of 
them gained from the approximate sorting. Due to the limited space, 
all results are archived at [36].  

 

value in aDTW, one-by-one, till it becomes tDTW. As 
we noted in Section 3, we would like to find a good 
updating order O which is general enough to be applied 
to any clustering algorithm. Therefore, we will focus on 
how to reduce the approximation error of aDTW 
quickly. Generally, we expect the approximate 
clustering result to be closer to the final clustering result 
if aDTW is more similar to tDTW.   

We first define the Normalized DTW 
Approximation Error (NDAE) for a given pair of time 
series (T1, T2) as: 
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NDAE(T1,T2) equals zero if the approximation 
distance DTW’(T1,T2) is identical to the DTW(T1,T2), in 
which case we do not need to update the distance for 
that pair, while we should give priority to update DTW 
for those pairs with a larger NDAE . It is difficult to 
order NDAE based on (5), thus we replace DTW in (5) 
by (2), and obtain another equivalent expression for 
NDAE(T1,T2): 
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Let us consider the numerator / denominator: 
� We cannot compare the numerator for pairs of time 

series (since the DTW_Ratio(T1,T2) is unknown); 
however, based on tests in Section 4.1, its expected 
value is very small.  

� We can approximately sort the denominator. Since 
ED and LB are known, and as we have previously 
shown (in Section 4.1), a pair of time series with a 
larger ED/LB is more likely to have a smaller 
DTW_Ratio.  
Therefore, we can make a similar claim that a pair of 

time series with a larger ED/LB is more likely to have a 
larger NDAE, and therefore should be given priority to 
update its true DTW distance. 

We have compared our proposed ordering technique 
to a dozen alternatives: random ordering, 
smallest/largest value in aDTW first, items from 
lowest/highest variance column in aDTW first, etc. 
Surprisingly, considering all datasets and clustering 
algorithms, random ordering is a very competitive 
technique, and thus we use it as our straw man technique 
in the next section. 

6 EMPIRICAL EVALUATION 
To obtain a thorough evaluation of our ideas, we: 

� Tested on all eleven datasets containing at least 
2,000 time series from the UCR Time Series 
repository [38], the world’s largest collection of 
time series datasets. 

� Evaluated the similarity of 133,601,661 (non-
duplicated) pairs of time series from diverse 



domains, such as astronomy, sensor networks, 
robotics, etc. 

� Applied three different types of clustering 
algorithms (hierarchical, partitional and spectral), 
and measured their performance by 5 indices. 

� Created a website [36] which contains all datasets 
and code used in this work, together with 
spreadsheets which contain the raw numbers 
displayed in all the figures. In addition, the website 
contains additional experiments which we could not 
fit into this work (including a YouTube video 
illustrating the utility of our ideas: 
http://youtu.be/43nKmEuum2c). 

6.1 DTW Approximation 
We begin our experiments with a comparison of the 

mean NDAE (the smaller the better, see (5)) of all pair-
wise approximations by three methods: LB, ED and our 
proposed DTW_Ratio-based approximation 
(DTW_Ratio for short below). Recall that the latter 
needs to randomly sample a tiny fraction of true DTW 
distances. To be fair to the other methods, we also 
updated those sampled DTW for LB and ED. For each 
dataset, we calculated mean NDAE of all (M×(M-1))/2 
pairs approximations, repeating each test ten times,  and 
reported the mean in Figure 11:  

0

0.4

0.8

1.2

1.6

1 2 3 4 5 6 7 8 9 10 11
DTW_Ratio

LB
ED

 
Figure 11: Mean of NDAE of all pair-wise 
approximations by three DTW approximation methods, 
tested on eleven large datasets. Smaller values are 
better. The first four datasets are discussed in Section 4 
and [36] contains a description/key for all datasets. 

The dominance of DTW_Ratio is quite obvious in 
the above figure. Notably, the mean NDAE (averaged on 
all datasets) by DTW_Ratio is just 0.1, which means the 
expected error of our approximation is only one-tenth of 
the true DTW. The results bode well for our proposed 
anytime algorithm that exploits this approximation.

Having shown that we can estimate the initial aDTW 
very accurately, we are ready to evaluate two desirable 
properties (cf. Section 2.2) of the anytime algorithm.  

The first one is the interruptibility, here in terms of 
how long it takes to obtain the first aDTW. While LB 
and ED can be calculated quickly for all pairs, the 
number of sampled DTW distances must be a small 
number. For the above tests, the sampling rate for each 
dataset varies from 0.02% to 0.25%, with an average of 
just 0.1%. Furthermore, as analyzed in Section 4.2, the 
number of DTW calculations required by sampling will 

not increase as the dataset gets larger. In fact, the largest 
sampling rate above comes from the smallest dataset we 
tested. To give the reader a concrete sense of how much 
speed up we can gain from the approximation, we 
consider the “star light curve” as an example. The time 
to calculate the full distance matrix of ED and LB is 23 
minutes and 116 minutes, respectively. Just 7,760 
(averaged over 10 runs) DTW distances are sampled 
from all 42,647,230 possible pairs by our initial 
approximation, which takes about 33 minutes. So, the 
overall time the user has to wait for aDTW to be built is 
less than 3 hours, in contrast to the 127 days for the 
batch algorithm. We archived full experimental results 
on all eleven datasets at [36], showing a speed-up from 
113 times to more than 1000 times. 

The second property is the low overhead. Compared 
to the batch algorithm, we have to calculate two more 
distance matrices of LB and ED. However, as shown 
above, this overhead time is inconsequential (just 0.08% 
of the time of the batch algorithm for the “star light 
curve” dataset).  

6.2 Anytime Clustering 
In this section we focus on evaluating the 

monotonicity and diminishing returns properties (cf. 
Section 2.2) of the anytime algorithm. We will also 
demonstrate the generality of our anytime clustering 
framework (Table 1) by using different types of 
clustering algorithms.
6.2.1 Hierarchical Clustering 

The output of hierarchical clustering is a tree 
structure called a dendrogram, which allows the user to 
view the clusters at different granularities. Hierarchical 
clustering has been widely used in a variety of research 
and application domains. For example, the authors of 
[31] have shown that hierarchical clustering is an 
effective tool for microarray data analysis to identify 
similar genes in large datasets. 

Here we considered the agglomerative hierarchical 
clustering with average linkage (UPGMA), which 
begins with M clusters and merges two most similar 
clusters in each step till all items are merged. 

For tests on each dataset, we first initialized aDTW 
with ED, and compared four combinations of strategies: 
updating aDTW by DTW_Ratio or not (line 1 of Table 
1), and arranging DTW updating order by ED/LB or 
randomly (line 5 of Table 1). The quality of the current 
clustering is measured at the beginning (no DTW 
calculations), just after the setup is complete (cf. Section 
2.2.2); when a tiny fraction6 of the DTW distances have 
been sampled; and at 10% steps as replacing distances in 
aDTW with the true distances. We repeated all four 

                                                           
6 We pick 0.5% for consistency and simplicity, because the sampling 
rate of DTW_Ratio varies for each dataset and each run (from 0.02% 
to 0.25%). 



anytime strategies on each dataset ten times, and report 
the mean values. Figure 12 shows the results for the 
“Two Patterns” dataset. 
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Figure 12: Quality of anytime hierarchical clustering 
on the “Two Patterns” dataset. Four anytime 
strategies are compared by Cophenetic Correlation 
Coefficient (top) and Adjusted Rand Index (bottom). 

We can see from Figure 12 that our championed 
strategy “DTW_Ratio (approximation) + ED/LB 
(updating order)” (the top line) beats all other three at 
almost all time steps. The second observation is that the 
two techniques using DTW_Ratio achieve a huge 
improvement very early, when just 0.5% of all DTW 
calculations have been performed. In contrast, the 
clustering quality of “Random” (the bottom line) is still 
very poor even after it has calculated 90% of all DTW 
distances. Another interesting finding is that the 
“ED/LB” updating order still helps without the boosting 
by DTW_Ratio (the thicker dashed line); its clustering 
quality surpasses or becomes very close to “DTW_Ratio 
+ Random” after 10% of DTW calculations. 

Because the performance of “ED/LB” and 
“DTW/Ratio + Random” almost always resides between 
the other two, to enhance the visual clarity, we will not 
show their results in the rest of this paper. Moreover, as 
different measurements (CCC and ARI as shown in 
Figure 12, and see other three7 at [36]) are often highly 
related, we will only show one measure in the plots 
below to reduce redundancy. The reader can find the full 
(all strategies compared by all measurements on all 
eleven datasets) results at [36]. 

For four datasets discussed in Section 4, we show 
their evaluation results measured by CCC in Figure 13. 
We choose CCC because it considers all levels of 
dendrogram. We see very similar results. “DTW_Ratio 
+ ED/LB” achieves almost all possible improvement at 
the very beginning and dominates “Random” all the 
time. If we compare the first check point of four 
datasets, we can find that the scores for “Two Patterns” 
and “Face(all)” are much lower than those of the other 

                                                           
7 Including several measurements which do not require the final exact 
DTW distance matrix, hence we have a heuristic to suggest when to 
stop the anytime algorithm.  

two (notably, also holds for other two clustering 
algorithms, see Figure 14 and Figure 15). 
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Figure 13: Quality of anytime hierarchical clustering on 
four large datasets (note we include “Two Patterns” 
shown in Figure 12 for completeness). “DTW_Ratio + 
ED/LB” (the solid/top line) beats “Random” (the 
dashed/bottom line) all the time for all datasets. 

This is probably due to the “highly-warping” 
property of these two datasets, making the clustering 
solutions by ED and DTW quite different.  
6.2.2 K-medoids Clustering 

K-medoids clustering belongs to another category of 
clustering called partitional clustering, which tries to 
find the best K partitions of the dataset. Instead of 
averaging data points (which is still an open problem 
under warping [24]) as K-means, K-medoids chooses a 
data point from the cluster as its centroid (called 
medoid). There exist several variations of K-medoids 
based algorithms, and we have chosen the classic PAM 
algorithm [15], since it does not require any parameter 
settings beyond K. Although it is slower than 
hierarchical and spectral clustering (as discussed below), 
taking minutes rather than seconds, it is still dwarfed by 
the DTW calculations (thus, Assumption 2 holds). 

The quality of anytime K-medoids clustering 
measured by ARI (CCC is only defined for hierarchical 
clustering) on the same four datasets is compared in 
Figure 14 (similar results on all other datasets can be 
found at [36]): 
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Figure 14: Quality of anytime K-medoids clustering on 
four large datasets. “DTW_Ratio + ED/LB” (the 
solid/top line) always beats “Random” (the 
dashed/bottom line). 

Again, we see the dominance of “DTW_Ratio + 
ED/LB” in all four datasets. However, we do find it does 
not work well enough for the “Two Patterns” dataset if 
we consider the diminishing returns. We take some 
comfort in noting this is the only synthetic dataset 
among the four. Moreover, we have done additional 



studies to further understand this outlying example, but 
pushed our tentative explanations to [36] for brevity. 
Another surprising observation is that for “Random”: 
the quality of clustering can decrease even after 
calculating more than 50% of DTW distances. 
6.2.3 Spectral Clustering 

The final clustering technique we considered is 
spectral clustering, which transfers the original data into 
a new space that is more amiable to clustering. Among 
various implementations, we tested the most popular, 
normalized spectral clustering by Ng et al. [23]. 

Figure 15 shows results of anytime spectral 
clustering: 
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Figure 15: Quality of anytime spectral clustering on 
four large datasets. “DTW_Ratio + ED/LB” (the solid 
line) still shows a better performance than “Random” 
(the dashed line) for all datasets. 

In this set of experiments, two strategies appear 
closer performance than in the above two clustering 
algorithms we have tested. This might be because the 
similarity graphs in the spectral clustering only model 
local neighborhood relationships [1], and therefore less 
DTW updating is required. For example, in the top two 
plots of Figure 15, even for “Random” its ARI increases 
to an almost perfect score after 10% of DTW 
calculations, while this happens even faster for 
“DTW_Ratio + ED/LB”. However, the latter is still 
favorable especially when the time to calculate the full 
DTW distance matrix is long. For example, it took 15 
hours for the batch algorithm to calculate the DTW 
distance matrix for the “Two Patterns” dataset, so 10% 
of the calculation would still take as long as one and a 
half hours, while our DTW_Ratio-based approximation 
only took 7 minutes. Note that clusterings based on 
these three methods are almost identical (see the top left 
of Figure 15). We did the same experiment on a larger 
“Two Patterns” dataset with 25,000 time series:  In this 
case the DTW_Ratio approximation reduced the time 
from 15.7 days (by the batch algorithm) to 2.8 hours, 
while still generating a very similar clustering result (see 
a visual demonstration as a video or a sequence of high 
resolution images at [36]). 

7 DISCUSSION AND CONCLUSIONS 
While we have focused on anytime clustering of 

time series using DTW in this work, we believe that our 
ideas may have applications to other expensive distance 

measures for time series, such as LCSS, EDR, ERP, 
SpADE and Swale [5], so long as both an upper and 
lower bound can be defined for them. However, we do 
not consider these in great detail for two reasons. First, it 
allows a simpler and more concrete exposition of our 
ideas, and second, a recent extensive empirical study has 
suggested that DTW is at least competitive with all other 
measures for the highly related problem of nearest 
neighbor classification [5].  

Likewise, our ideas may have utility for clustering 
other data types, where the most effective distance 
measure is expensive, but inexpensive upper and lower 
bounds are available. Such examples could include 
strings, where quadratic-time edit distance is often the 
best measure, and simple bounds exist (The distance is 
always at least the difference of the lengths of the two 
strings. It is at most the length of the longer string), or 
Earth Movers Distance which is quadratic but has tight 
bounds available [2].   

Beyond clustering, our distance matrix that can be 
built in an anytime fashion can also be utilized in other 
problems. For example, in [21] all pair-wise 
correlations/distances for tens of thousands of time 
series from data warehouses are needed for discovery of 
patterns and anomalies in an application in data center 
management. This problem may be amiable to a very 
similar anytime framework. Again we leave such 
considerations to future work in order to do the special 
case justice in both presentation and evaluation. 

We have shown the first example of an anytime 
clustering algorithm for large datasets under the DTW 
measure. Our algorithm has an inconsequential cost in 
terms of additional time, but allows us to achieve most 
of the benefit of the batch algorithm in a just a tiny 
fraction of the time. We have tested on datasets with up 
to 25,000 objects, which is at least an order of 
magnitude larger than any other time series clustering 
efforts that we are aware of. Finally we have made all 
our code and data freely available to allow replication, 
extension and adoption of our ideas. 
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